Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(6): 2081-2086, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38300507

RESUMO

Nanoscale magnetic resonance imaging (NanoMRI) is an active area of applied research with potential applications in structural biology and quantum engineering. The success of this technological vision hinges on improving the instrument's sensitivity and functionality. A particular challenge is the optimization of the magnetic field gradient required for spatial encoding and of the radio frequency field used for spin control, in analogy to the components used in clinical MRI. In this work, we present the fabrication and characterization of a magnet-in-microstrip device that yields a compact form factor for both elements. We find that our design leads to a number of advantages, among them a 4-fold increase of the magnetic field gradient compared to those achieved with traditional fabrication methods. Our results can be useful for boosting the efficiency of a variety of different experimental arrangements and detection principles in the field of NanoMRI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA