Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999009

RESUMO

Skin aging is an inevitable and intricate process instigated, among others, by oxidative stress. The search for natural sources that inhibit this mechanism is a promising approach to preventing skin aging. The purpose of our study was to evaluate the composition of phenolic compounds in the micellar extract of Phaseolus vulgaris sprouts. The results of a liquid chromatography-mass spectrometry (LC-MS) analysis revealed the presence of thirty-two constituents, including phenolic acids, flavanols, flavan-3-ols, flavanones, isoflavones, and other compounds. Subsequently, the extract was assessed for its antioxidant, anti-inflammatory, anti-collagenase, anti-elastase, anti-tyrosinase, and cytotoxic properties, as well as for the evaluation of collagen synthesis. It was demonstrated that micellar extract from common bean sprouts has strong anti-aging properties. The performed WST-8 (a water-soluble tetrazolium salt) assay revealed that selected concentrations of extract significantly increased proliferation of human dermal fibroblasts compared to the control cells in a dose-dependent manner. A similar tendency was observed with respect to collagen synthesis. Our results suggest that micellar extract from Phaseolus vulgaris sprouts can be considered a promising anti-aging compound for applications in cosmetic formulations.


Assuntos
Antioxidantes , Fibroblastos , Phaseolus , Compostos Fitoquímicos , Extratos Vegetais , Phaseolus/química , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/química , Fibroblastos/efeitos dos fármacos , Envelhecimento da Pele/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
2.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982158

RESUMO

Hydroxyapatite (HA), the principal mineral of bone tissue, can be fabricated as an artificial calcium phosphate (CaP) ceramic and potentially used as bioceramic material for bone defect treatment. Nevertheless, the production method (including the applied sintering temperature) of synthetic hydroxyapatite directly affects its basic properties, such as its microstructure, mechanical parameters, bioabsorbability, and osteoconductivity, and in turn influences its biomedical potential as an implantable biomaterial. The wide application of HA in regenerative medicine makes it necessary to explain the validity of the selection of the sintering temperature. The main emphasis of this article is on the description and summarization of the key features of HA depending on the applied sintering temperature during the synthesis process. The review is mainly focused on the dependence between the HA sintering temperature and its microstructural features, mechanical properties, biodegradability/bioabsorbability, bioactivity, and biocompatibility.


Assuntos
Materiais Biocompatíveis , Durapatita , Durapatita/química , Temperatura , Materiais Biocompatíveis/química , Osso e Ossos , Próteses e Implantes
3.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108356

RESUMO

Infections that occur during wound healing involve the most frequent complications in the field of wound care which not only inhibit the whole process but also lead to non-healing wound formation. The diversity of the skin microbiota and the wound microenvironment can favor the occurrence of skin infections, contributing to an increased level of morbidity and even mortality. As a consequence, immediate effective treatment is required to prevent such pathological conditions. Antimicrobial agents loaded into wound dressings have turned out to be a great option to reduce wound colonization and improve the healing process. In this review paper, the influence of bacterial infections on the wound-healing phases and promising modifications of dressing materials for accelerated healing of infected wounds are discussed. The review paper mainly focuses on the novel findings on the use of antibiotics, nanoparticles, cationic organic agents, and plant-derived natural compounds (essential oils and their components, polyphenols, and curcumin) to develop antimicrobial wound dressings. The review article was prepared on the basis of scientific contributions retrieved from the PubMed database (supported with Google Scholar searching) over the last 5 years.


Assuntos
Anti-Infecciosos , Infecção dos Ferimentos , Humanos , Cicatrização , Pele , Bandagens , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Infecção dos Ferimentos/terapia
4.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982648

RESUMO

Hydroxyapatite (HAP) is the most common calcium phosphate ceramic that is used in biomedical applications, e.g., as an inorganic component of bone scaffolds. Nevertheless, fluorapatite (FAP) has gained great attention in the area of bone tissue engineering in recent times. The aim of this study was a comprehensive comparative evaluation of the biomedical potential of fabricated HAP- and FAP-based bone scaffolds, to assess which bioceramic is better for regenerative medicine applications. It was demonstrated that both biomaterials had a macroporous microstructure, with interconnected porosity, and were prone to slow and gradual degradation in a physiological environment and in acidified conditions mimicking the osteoclast-mediated bone resorption process. Surprisingly, FAP-based biomaterial revealed a significantly higher degree of biodegradation than biomaterial containing HAP, which indicated its higher bioabsorbability. Importantly, the biomaterials showed a similar level of biocompatibility and osteoconductivity regardless of the bioceramic type. Both scaffolds had the ability to induce apatite formation on their surfaces, proving their bioactive property, that is crucial for good implant osseointegration. In turn, performed biological experiments showed that tested bone scaffolds were non-toxic and their surfaces promoted cell proliferation and osteogenic differentiation. Moreover, the biomaterials did not exert a stimulatory effect on immune cells, since they did not generate excessive amounts of reactive oxygen species (ROS) and reactive nitrogen species (RNS), indicating a low risk of inflammatory response after implantation. In conclusion, based on the obtained results, both FAP- and HAP-based scaffolds have an appropriate microstructure and high biocompatibility, being promising biomaterials for bone regeneration applications. However, FAP-based biomaterial has higher bioabsorbability than the HAP-based scaffold, which is a very important property from the clinical point of view, because it enables a progressive replacement of the bone scaffold with newly formed bone tissue.


Assuntos
Durapatita , Osteogênese , Durapatita/farmacologia , Durapatita/química , Alicerces Teciduais/química , Osso e Ossos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Apatitas , Regeneração Óssea , Engenharia Tecidual/métodos , Porosidade
5.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768949

RESUMO

Polysaccharides are one of the most abundant natural polymers and their molecular structure influences many crucial characteristics-inter alia hydrophobicity, mechanical, and physicochemical properties. Vibrational spectroscopic techniques, such as infrared (IR) and Raman spectroscopies are excellent tools to study their arrangement during polymerization and cross-linking processes. This review paper summarizes the application of the above-mentioned analytical methods to track the structure of natural polysaccharides, such as cellulose, hemicellulose, glucan, starch, chitosan, dextran, and their derivatives, which affects their industrial and medical use.


Assuntos
Polissacarídeos , Análise Espectral Raman , Amido/química , Polímeros/química , Celulose
6.
Molecules ; 28(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446899

RESUMO

Difficult-to-treat bone damage resulting from metabolic bone diseases, mechanical injuries, or tumor resection requires support in the form of biomaterials. The aim of this research was to optimize the concentration of individual components of polymer-ceramic nanocomposite granules (nanofilled polymer composites) for application in orthopedics and maxillofacial surgery to fill small bone defects and stimulate the regeneration process. Two types of granules were made using nanohydroxyapatite (nanoHA) and chitosan-based matrix (agarose/chitosan or curdlan/chitosan), which served as binder for ceramic nanopowder. Different concentrations of the components (nanoHA and curdlan), foaming agent (sodium bicarbonate-NaHCO3), and chitosan solvent (acetic acid-CH3COOH) were tested during the production process. Agarose and chitosan concentrations were fixed to be 5% w/v and 2% w/v, respectively, based on our previous research. Subsequently, the produced granules were subjected to cytotoxicity testing (indirect and direct contact methods), microhardness testing (Young's modulus evaluation), and microstructure analysis (porosity, specific surface area, and surface roughness) in order to identify the biomaterial with the most favorable properties. The results demonstrated only slight differences among the resultant granules with respect to their microstructural, mechanical, and biological properties. All variants of the biomaterials were non-toxic to a mouse preosteoblast cell line (MC3T3-E1), supported cell growth on their surface, had high porosity (46-51%), and showed relatively high specific surface area (25-33 m2/g) and Young's modulus values (2-10 GPa). Apart from biomaterials containing 8% w/v curdlan, all samples were predominantly characterized by mesoporosity. Nevertheless, materials with the greatest biomedical potential were obtained using 5% w/v agarose, 2% w/v chitosan, and 50% or 70% w/v nanoHA when the chitosan solvent/foaming agent ratio was equal to 2:2. In the case of the granules containing curdlan/chitosan matrix, the most optimal composition was as follows: 2% w/v chitosan, 4% w/v curdlan, and 30% w/v nanoHA. The obtained test results indicate that both manufactured types of granules are promising implantable biomaterials for filling small bone defects that can be used in maxillofacial surgery.


Assuntos
Quitosana , Nanocompostos , Animais , Camundongos , Quitosana/farmacologia , Quitosana/química , Alicerces Teciduais/química , Polímeros , Sefarose/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Regeneração Óssea , Nanocompostos/química , Cerâmica/farmacologia , Solventes , Durapatita/química
7.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163687

RESUMO

It has been observed that bone fractures carry a risk of high mortality and morbidity. The deployment of a proper bone healing method is essential to achieve the desired success. Over the years, bone tissue engineering (BTE) has appeared to be a very promising approach aimed at restoring bone defects. The main role of the BTE is to apply new, efficient, and functional bone regeneration therapy via a combination of bone scaffolds with cells and/or healing promotive factors (e.g., growth factors and bioactive agents). The modern approach involves also the production of living bone grafts in vitro by long-term culture of cell-seeded biomaterials, often with the use of bioreactors. This review presents the most recent findings concerning biomaterials, cells, and techniques used for the production of living bone grafts under in vitro conditions. Particular attention has been given to features of known bioreactor systems currently used in BTE: perfusion bioreactors, rotating bioreactors, and spinner flask bioreactors. Although bioreactor systems are still characterized by some limitations, they are excellent platforms to form bioengineered living bone grafts in vitro for bone fracture regeneration. Moreover, the review article also describes the types of biomaterials and sources of cells that can be used in BTE as well as the role of three-dimensional bioprinting and pulsed electromagnetic fields in both bone healing and BTE.


Assuntos
Bioengenharia , Reatores Biológicos , Transplante Ósseo , Engenharia Tecidual , Animais , Osso e Ossos/fisiologia , Humanos , Impressão Tridimensional
8.
Int J Mol Sci ; 23(7)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35409345

RESUMO

Intervertebral cages made of Ti6Al4V alloy show excellent osteoconductivity, but also higher stiffness, compared to commonly used polyether-ether-ketone (PEEK) materials, that may lead to a stress-shielding effect and implant subsidence. In this study, a metallic intervertebral fusion cage, with improved mechanical behavior, was manufactured by the introduction of a three-dimensional (3D) mesh structure to Ti6Al4V material, using an additive manufacturing method. Then, the mechanical and biological properties of the following were compared: (1) PEEK, with a solid structure, (2) 3D-printed Ti6Al4V, with a solid structure, and (3) 3D-printed Ti6Al4V, with a mesh structure. A load-induced subsidence test demonstrated that the 3D-printed mesh Ti6Al4V cage had significantly lower tendency (by 15%) to subside compared to the PEEK implant. Biological assessment of the samples proved that all tested materials were biocompatible. However, both titanium samples (solid and mesh) were characterized by significantly higher bioactivity, osteoconductivity, and mineralization ability, compared to PEEK. Moreover, osteoblasts revealed stronger adhesion to the surface of the Ti6Al4V samples compared to PEEK material. Thus, it was clearly shown that the 3D-printed mesh Ti6Al4V cage possesses all the features for optimal spinal implant, since it carries low risk of implant subsidence and provides good osseointegration at the bone-implant interface.


Assuntos
Ligas , Titânio , Benzofenonas , Cetonas/química , Cetonas/farmacologia , Lasers , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Próteses e Implantes , Titânio/química , Titânio/farmacologia
9.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077480

RESUMO

Curdlan (ß-1,3-glucan), as a biodegradable polymer, is still an underestimated but potentially attractive matrix for the production of dressing materials. However, due to its lack of susceptibility to functionalization, its use is limited. The proposed curdlan modification, using a functional polycatecholamine layer, enables the immobilization of selected oxidoreductases (laccase and peroxidase) on curdlan hydrogel. The following significant changes of biological and mechanical properties of polycatecholamines + oxidoreductases-modified matrices were observed: reduced response of human monocytes in contact with the hydrogels, modulated reaction of human blood, in terms of hemolysis and clot formation, and changed mechanical properties. The lack of toxicity towards human fibroblasts and the suppression of cytokines released by human monocytes in comparison to pristine curdlan hydrogel, seems to make the application of such modifications attractive for biomedical purposes. The obtained results could also be useful for construction of a wide range of biomaterials based on other polymer hydrogels.


Assuntos
Hidrogéis , beta-Glucanas , Glucanos , Humanos , Hidrogéis/farmacologia , Oxirredutases
10.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682630

RESUMO

The cross-linking temperature of polymers may affect the surface characteristics and molecular arrangement, which are responsible for their mechanical and physico-chemical properties. The aim of this research was to determine and explain in detail the mechanism of unit interlinkage of two-component chitosan/1,3-ß-d-glucan matrices gelled at 90 °C. This required identifying functional groups interacting with each other and assessing surface topography providing material chemical composition. For this purpose, various spectroscopic and microscopic approaches, such as attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), were applied. The results indicate the involvement mainly of the C-C and C-H groups and C=O⋯HN moieties in the process of biomaterial polymerization. Strong chemical interactions and ionocovalent bonds between the N-glucosamine moieties of chitosan and 1,3-ß-d-glucan units were demonstrated, which was also reflected in the uniform surface of the sample without segregation. These unique properties, hybrid character and proper cell response may imply the potential application of studied biomaterial as biocompatible scaffolds used in regenerative medicine, especially in bone restoration and/or wound healing.


Assuntos
Quitosana , Materiais Biocompatíveis/química , Quitosana/química , Glucanos , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Propriedades de Superfície
11.
Molecules ; 27(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35056652

RESUMO

In this study, well-known oligomers containing ethyl methacrylate (EMA) and glycidyl methacrylate (GMA) components for the synthesis of the oligomeric network [P(EMA)-co-(GMA)] were used. In order to change the hydrophobic character of the [P(EMA)-co-(GMA)] to a more hydrophilic one, the oligomeric chain was functionalized with ethanolamine, xylitol (Xyl), and L-ornithine. The oligomeric materials were characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy, scanning electron microscopy, and differential thermogravimetric analysis. In the final stage, thanks to the large amount of -OH groups, it was possible to obtain a three-dimensional hydrogel (HG) network. The HGs were used as a matrix for the immobilization of methylene blue, which was chosen as a model compound of active substances, the release of which from the matrix was examined using spectrophotometric detection. The cytotoxic test was performed using fluid extracts of the HGs and human skin fibroblasts. The cell culture experiment showed that only [P(EMA)-co-(GMA)] and [P(EMA)-co-(GMA)]-Xyl have the potential to be used in biomedical applications. The studies revealed that the obtained HGs were porous and non-cytotoxic, which gives them the opportunity to possess great potential for use as an oligomeric network for drug reservoirs in in vitro application.


Assuntos
Compostos de Epóxi/química , Fibroblastos/efeitos dos fármacos , Hidrogéis/química , Metacrilatos/química , Micro-Ondas , Polímeros/farmacologia , Pele/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Polímeros/química
12.
Int J Mol Sci ; 22(3)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498630

RESUMO

Chronic immune response to bone implant may lead to delayed healing and its failure. Thus, newly developed biomaterials should be characterized by high biocompatibility. Moreover, it is well known that macrophages play a crucial role in the controlling of biomaterial-induced inflammatory response. Immune cells synthesize also a great amount of signaling molecules that regulate cell differentiation and tissue remodeling. Non-activated macrophages (M0) may be activated (polarized) into two main types of macrophage phenotype: proinflammatory type 1 macrophages (M1) and anti-inflammatory type 2 macrophages (M2). The aim of the present study was to assess the influence of the newly developed chitosan/agarose/nanohydroxyapatite bone scaffold (Polish Patent) on the macrophage polarization and osteogenic differentiation. Obtained results showed that macrophages cultured on the surface of the biomaterial released an elevated level of anti-inflammatory cytokines (interleukin-4, -10, -13, transforming growth factor-beta), which is typical of the M2 phenotype. Moreover, an evaluation of cell morphology confirmed M2 polarization of the macrophages on the surface of the bone scaffold. Importantly, in this study, it was demonstrated that the co-culture of macrophages-seeded biomaterial with bone marrow-derived stem cells (BMDSCs) or human osteoblasts (hFOB 1.19) enhanced their osteogenic ability, confirming the immunomodulatory effect of the macrophages on the osteogenic differentiation process. Thus, it was proved that the developed biomaterial carries a low risk of inflammatory response and induces macrophage polarization into the M2 phenotype with osteopromotive properties, which makes it a promising bone scaffold for regenerative medicine applications.


Assuntos
Materiais Biocompatíveis/química , Osso e Ossos/citologia , Macrófagos/citologia , Osteogênese/fisiologia , Alicerces Teciduais/química , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Quitosana/química , Técnicas de Cocultura , Citocinas/metabolismo , Durapatita/química , Humanos , Ativação de Macrófagos , Macrófagos/fisiologia , Células-Tronco Mesenquimais/citologia , Nanoestruturas/química , Osteoblastos/citologia , Sefarose/química
13.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34768905

RESUMO

Bioactive dressings are usually produced using natural or synthetic polymers. Recently, special attention has been paid to ß-glucans that act as immunomodulators and have pro-healing properties. The aim of this research was to use ß-1,3-glucan (curdlan) as a base for the production of bioactive dressing materials (curdlan/agarose and curdlan/chitosan) that were additionally enriched with vitamin C and/or hydrocortisone to improve healing of chronic and burn wounds. The secondary goal of the study was to compressively evaluate biological properties of the biomaterials. In this work, it was shown that vitamin C/hydrocortisone-enriched biomaterials exhibited faster vitamin C release profile than hydrocortisone. Consecutive release of the drugs is a desired phenomenon since it protects wounds against accumulation of high and toxic concentrations of the bioactive molecules. Moreover, biomaterials showed gradual release of low doses of the hydrocortisone, which is beneficial during management of burn wounds with hypergranulation tissue. Among all tested variants of biomaterials, dressing materials enriched with hydrocortisone and a mixture of vitamin C/hydrocortisone showed the best therapeutic potential since they had the ability to significantly reduce MMP-2 synthesis by macrophages and increase TGF-ß1 release by skin cells. Moreover, materials containing hydrocortisone and its blend with vitamin C stimulated type I collagen deposition by fibroblasts and positively affected their migration and proliferation. Results of the experiments clearly showed that the developed biomaterials enriched with bioactive agents may be promising dressings for the management of non-healing chronic and burn wounds.


Assuntos
Ácido Ascórbico/farmacologia , Queimaduras/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Hidrocortisona/farmacologia , Queratinócitos/efeitos dos fármacos , Cicatrização , beta-Glucanas/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Bandagens/estatística & dados numéricos , Queimaduras/etiologia , Queimaduras/patologia , Colágeno Tipo I/metabolismo , Quimioterapia Combinada , Fibroblastos/metabolismo , Humanos , Queratinócitos/metabolismo , Sefarose/metabolismo
14.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638753

RESUMO

A novel fluorapatite/glucan composite ("FAP/glucan") was developed for the treatment of bone defects. Due to the presence of polysaccharide polymer (ß-1,3-glucan), the composite is highly flexible and thus very convenient for surgery. Its physicochemical and microstructural properties were evaluated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), mercury intrusion, mechanical testing and compared with the reference material, which was a hydroxyapatite/glucan composite ("HAP/glucan") with hydroxyapatite granules (HAP) instead of FAP. It was found that FAP/glucan has a higher density and lower porosity than the reference material. The correlation between the Young's modulus and the compressive strength between the materials is different in a dry and wet state. Bioactivity assessment showed a lower ability to form apatite and lower uptake of apatite-forming ions from the simulated body fluid by FAP/glucan material in comparison to the reference material. Moreover, FAP/glucan was determined to be of optimal fluoride release capacity for osteoblasts growth requirements. The results of cell culture experiments showed that fluoride-containing biomaterial was non-toxic, enhanced the synthesis of osteocalcin and stimulated the adhesion of osteogenic cells.


Assuntos
Apatitas , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/metabolismo , Osteoblastos/metabolismo , beta-Glucanas , Apatitas/química , Apatitas/farmacologia , Linhagem Celular , Humanos , Porosidade , beta-Glucanas/química , beta-Glucanas/farmacologia
15.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418952

RESUMO

Raman spectroscopic imaging and mapping were applied to characterise three-compound ceramic composite biomaterial consisting of chitosan, ß-1,3-d-glucan (curdlan) and hydroxyapatite (HA) developed as a bone tissue engineering product (TEP). In this rapidly advancing domain of medical science, the urge for quick, reliable and specific method for products evaluation and tissue-implant interaction, in this case bone formation process, is constantly present. Two types of stem cells, adipose-derived stem cells (ADSCs) and bone marrow-derived stem cells (BMDSCs), were cultured on composite surface. Raman spectroscopic imaging provided advantageous information on molecular differences and spatial distribution of compounds within and between the cell-seeded and untreated samples at a microscopic level. With the use of this, it was possible to confirm composite biocompatibility and bioactivity in vitro. Deposition of HA and changes in its crystallinity along with protein adsorption proved new bone tissue formation in both mesenchymal stem cell samples, where the cells proliferated, differentiated and produced biomineralised extracellular matrix (ECM). The usefulness of spectroscopic Raman imaging was confirmed in tissue engineering in terms of both the organic and inorganic components considering composite-cells interaction.


Assuntos
Microscopia Confocal/métodos , Análise Espectral Raman , Alicerces Teciduais/química , Tecido Adiposo/citologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Células da Medula Óssea/citologia , Células Cultivadas , Quitosana/química , Durapatita/química , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual
16.
Int J Mol Sci ; 22(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804677

RESUMO

The risk of an early inflammation after implantation surgery of titanium implants has caused the development of different antimicrobial measures. The present research is aimed at characterizing the effects of nanosilver and nanocopper dispersed in the nanohydroxyapatite coatings, deposited on the Ti13Zr13Nb alloy, and on the chemical and biological properties of the coatings. The one-stage deposition process was performed by the electrophoretic method at different contents of nanomaterials in suspension. The surface topography of the coatings was examined with scanning electron microscopy. The wettability was expressed as the water contact angle. The corrosion behavior was characterized by the potentiodynamic technique. The release rate of copper and silver into the simulated body fluid was investigated by atomic absorption spectrometry. The antibacterial efficiency was evaluated as the survivability and adhesion of the bacteria and the growth of the biofilm. The cytotoxicity was assessed for osteoblasts. The results demonstrate that silver and copper increase the corrosion resistance and hydrophilicity. Both elements together effectively kill bacteria and inhibit biofilm growth but appear to be toxic for osteoblasts. The obtained results show that the nanohydroxyapatite coatings doped with nanosilver and nanocopper in a one-stage electrophoretic process can be valuable for antibacterial coatings.


Assuntos
Ligas/química , Antibacterianos/química , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/química , Durapatita/química , Nanopartículas Metálicas/química , Titânio/química , Biofilmes/efeitos dos fármacos , Fenômenos Químicos , Cobre/química , Corrosão , Eletroforese , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Prata/química , Propriedades de Superfície
17.
Molecules ; 26(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34770788

RESUMO

In view of the abundant evidence that Lycopodiaceae alkaloids, including the well-known huperzine A (HupA), are among the potent acetylcholinesterase (AChE) inhibitors, an attempt was made to search for new compounds responsible for this property. For this purpose, three plant species belonging to the Lycopodiaceae family, commonly found in the Euro-Asia region, were subjected to the isolation of bioactive compounds, their identification and subsequent evaluation of their anticholinesterase and cytotoxic activities. Methanolic extracts of two Lycopodium and one Hupezia species were obtained via optimized pressurized liquid extraction (PLE) and then pre-purified using innovative gradient vacuum liquid chromatography (gVLC). For the first time, three sorbents of different porosity packed in polypropylene cartridges and mobile phase systems of different polarity were used to elute the target compounds. This technique proved to be a rapid tool for the obtainment of alkaloid fractions and allowed one to select the appropriate process conditions to yield potent AChE inhibitors in each of the species studied. More than 100 collected fractions were analyzed via HPLC/ESI-QTOF-MS, which enabled one to detect more than 50 compounds, including several new ones previously unreported. Some of them were present in high purity fractions (60-90% of the established purity). TLC bioautography assays proved that the analyzed species are rich sources of AChE inhibitors, but H. selago showed the highest anti-AChE activity. Additionally, the modified silanized silica gel sorbent used allowed one to isolate L. clavatum alkaloids more efficiently using an aqueous reversed-phase solvent system. Furthermore, the tested extracts from the three plant extracts were found to be safe, as they did not exhibit cytotoxicity to skin fibroblasts.


Assuntos
Alcaloides/farmacologia , Inibidores da Colinesterase/farmacologia , Lycopodiaceae/química , Extratos Vegetais/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Fracionamento Químico , Inibidores da Colinesterase/química , Inibidores da Colinesterase/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Fibroblastos/efeitos dos fármacos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Bioorg Chem ; 97: 103676, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32097795

RESUMO

The two series of thiosemicarbazone derivatives with thiazolidine-2,4-dione (TZD) core were designed and synthesized. The antimycobacterial activity of the target compounds was tested against Mycobacterium tuberculosis H37Ra by broth microdilution method with resazurin as an indicator of the metabolic activity of mycobacteria. Conducted studies revealed antimycobacterial activity in the concentration range of 0.031-64 µg/ml for 31 synthesized derivatives with TZD core. The highest antimycobacterial activity (MIC = 0.031-0.125 µg/ml) was demonstrated for the new group of compounds: TZD-based hybrids with 4-unsubstituted thiosemicarbazone substituent. Furthermore, all the tested compounds within this group were characterized by low cytotoxicity. Among tested compounds, two compounds are the most promising potential antimycobacterial agents since they not only show very low MIC values, but also non-toxicity against Vero cells at tested concentration range. High effectiveness and safety of these synthesized compounds makes them promising candidates as antimycobacterial agents.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tiazolidinedionas/química , Tiazolidinedionas/farmacologia , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Animais , Antituberculosos/síntese química , Chlorocebus aethiops , Desenho de Fármacos , Humanos , Tiazolidinedionas/síntese química , Tiossemicarbazonas/síntese química , Tuberculose/tratamento farmacológico , Células Vero
19.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858980

RESUMO

In order to determine the effect of different gelation temperatures (80 °C and 90 °C) on the structural arrangements in 1,3-ß-d-glucan (curdlan) matrices, spectroscopic and microscopic approaches were chosen. Attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) and Raman spectroscopy are well-established techniques that enable the identification of functional groups in organic molecules based on their vibration modes. X-ray photoelectron spectroscopy (XPS) is a quantitative analytical method utilized in the surface study, which provided information about the elemental and chemical composition with high surface sensitivity. Contact angle goniometer was applied to evaluate surface wettability and surface free energy of the matrices. In turn, the surface topography characterization was obtained with the use of atomic force microscopy (AFM) and scanning electron microscopy (SEM). Described techniques may facilitate the optimization, modification, and design of manufacturing processes (such as the temperature of gelation in the case of the studied 1,3-ß-d-glucan) of the organic polysaccharide matrices so as to obtain biomaterials with desired characteristics and wide range of biomedical applications, e.g., entrapment of drugs or production of biomaterials for tissue regeneration. This study shows that the 1,3-ß-d-glucan polymer sample gelled at 80 °C has a distinctly different structure than the matrix gelled at 90 °C.


Assuntos
Portadores de Fármacos/química , beta-Glucanas/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Estrutura Molecular , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Propriedades de Superfície , Temperatura , Molhabilidade
20.
Int J Mol Sci ; 21(13)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635182

RESUMO

Low-temperature atmospheric pressure plasma was demonstrated to have an ability to generate different reactive oxygen and nitrogen species (RONS), showing wide biological actions. Within this study, mesoporous silica nanoparticles (NPs) and FexOy/NPs catalysts were produced and embedded in the polysaccharide matrix of chitosan/curdlan/hydroxyapatite biomaterial. Then, basic physicochemical and structural characterization of the NPs and biomaterials was performed. The primary aim of this work was to evaluate the impact of the combined action of cold nitrogen plasma and the materials produced on proliferation and osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (ADSCs), which were seeded onto the bone scaffolds containing NPs or FexOy/NPs catalysts. Incorporation of catalysts into the structure of the biomaterial was expected to enhance the formation of plasma-induced RONS, thereby improving stem cell behavior. The results obtained clearly demonstrated that short-time (16s) exposure of ADSCs to nitrogen plasma accelerated proliferation of cells grown on the biomaterial containing FexOy/NPs catalysts and increased osteocalcin production by the cells cultured on the scaffold containing pure NPs. Plasma activation of FexOy/NPs-loaded biomaterial resulted in the formation of appropriate amounts of oxygen-based reactive species that had positive impact on stem cell proliferation and at the same time did not negatively affect their osteogenic differentiation. Therefore, plasma-activated FexOy/NPs-loaded biomaterial is characterized by improved biocompatibility and has great clinical potential to be used in regenerative medicine applications to improve bone healing process.


Assuntos
Substitutos Ósseos/química , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Células 3T3 , Animais , Técnicas de Cultura de Células/métodos , Proliferação de Células , Células Cultivadas , Compostos Férricos , Humanos , Teste de Materiais , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanopartículas/ultraestrutura , Nitrogênio , Osteoblastos/citologia , Osteogênese , Gases em Plasma , Dióxido de Silício , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA