Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 18(21): 4042-4066, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35608282

RESUMO

Solvent-assisted block copolymer self-assembly is a compelling method for processing and advancing practical applications of these materials due to the exceptional level of the control of BCP morphology and significant acceleration of ordering kinetics. Despite substantial experimental and theoretical efforts devoted to understanding of solvent-assisted BCP film ordering, the development of a universal BCP patterning protocol remains elusive; possibly due to a multitude of factors which dictate the self-assembly scenario. The aim of this review is to aggregate both seminal reports and the latest progress in solvent-assisted directed self-assembly and to provide the reader with theoretical background, including the outline of BCP ordering thermodynamics and kinetics phenomena. We also indicate significant BCP research areas and emerging high-tech applications where solvent-assisted processing might play a dominant role.

2.
Adv Mater ; 36(31): e2403114, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38781555

RESUMO

Multi-responsive nanomembranes are a new class of advanced materials that can be harnessed in complex architectures for micro and nano-manipulators, artificial muscles, energy harvesting, soft robotics, and sensors. The design and fabrication of responsive membranes must meet such challenges as trade-offs between responsiveness and mechanical durability, volumetric low-cost production ensuring low environmental impact, and compatibility with standard technologies or biological systems This work demonstrates the fabrication of multi-responsive, mechanically robust poly(1,3-diaminopropane) (pDAP) nanomembranes and their application in fast photoactuators. The pDAP films are developed using a plasma-assisted polymerization technique that offers large-scale production and versatility of potential industrial relevance. The pDAP layers exhibit high elasticity with the Young's modulus of ≈7 GPa and remarkable mechanical durability across 20-80 °C temperatures. Notably, pDAP membranes reveal immediate and reversible contraction triggered by light, rising temperature, or reducing relative humidity underpinned by a reversible water sorption mechanism. These features enable the fabrication of photoactuators composed of pDAP-coated Si nanocantilevers, demonstrating ms timescale response to light, tens of µm deflections, and robust performance up to kHz frequencies. These results advance fundamental research on multi-responsive nanomembranes and hold the potential to boost versatile applications in light-to-motion conversion and sensing toward the industrial level.

3.
Nanoscale ; 16(34): 16227-16237, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39140363

RESUMO

The contraction of nanomaterials triggered by stimuli can be harnessed for micro- and nanoscale energy harvesting, sensing, and artificial muscles toward manipulation and directional motion. The search for these materials is dictated by optimizing several factors, such as stimulus type, conversion efficiency, kinetics and dynamics, mechanical strength, compatibility with other materials, production cost and environmental impact. Here, we report the results of studies on bio-inspired nanomembranes made of poly-catecholamines such as polydopamine, polynorepinephrine, and polydextrodopa. Our findings reveal robust mechanical features and remarkable multi-responsive properties of these materials. In particular, their immediate contraction can be triggered globally by atmospheric moisture reduction and temperature rise and locally by laser or white light irradiation. For each scenario, the process is fully reversible, i.e., membranes spontaneously expand upon removing the stimulus. Our results unveil the universal multi-responsive nature of the considered polycatecholamine membranes, albeit with distinct differences in their mechanical features and response times to light stimulus. We attribute the light-triggered contraction to photothermal heating, leading to water desorption and subsequent contraction of the membranes. The combination of multi-responsiveness, mechanical robustness, remote control via light, low-cost and large-scale fabrication, biocompatibility, and low-environment impact makes polycatecholamine materials promising candidates for advancing technologies.

4.
Adv Mater ; 36(29): e2401137, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38742799

RESUMO

In contrast to biological cell membranes, it is still a major challenge for synthetic membranes to efficiently separate ions and small molecules due to their similar sizes in the sub-nanometer range. Inspired by biological ion channels with their unique channel wall chemistry that facilitates ion sieving by ion-channel interactions, the first free-standing, ultrathin (10-17 nm) nanomembranes composed entirely of polydopamine (PDA) are reported here as ion and molecular sieves. These nanomembranes are obtained via an easily scalable electropolymerization strategy and provide nanochannels with various amine and phenolic hydroxyl groups that offer a favorable chemical environment for ion-channel electrostatic and hydrogen bond interactions. They exhibit remarkable selectivity for monovalent ions over multivalent ions and larger species with K+/Mg2+ of ≈4.2, K+/[Fe(CN)6]3- of ≈10.3, and K+/Rhodamine B of ≈273.0 in a pressure-driven process, as well as cyclic reversible pH-responsive gating properties. Infrared spectra reveal hydrogen bond formation between hydrated multivalent ions and PDA, which prevents the transport of multivalent ions and facilitates high selectivity. Chemically rich, free-standing, and pH-responsive PDA nanomembranes with specific interaction sites are proposed as customizable high-performance sieves for a wide range of challenging separation requirements.

5.
ACS Appl Mater Interfaces ; 15(50): 57970-57980, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37644616

RESUMO

The synthesis of transition metal oxide nanostructures, thanks to their high surface-to-volume ratio and the resulting large fraction of surface atoms with high catalytic activity, is of prime importance for the development of new sensors and catalytic materials. Here, we report an economical, time-efficient, and easily scalable method of fabricating nanowires composed of vanadium, chromium, manganese, iron, and cobalt oxides by employing simultaneous block copolymer (BCP) self-assembly and selective sequestration of metal-organic acetylacetonate complexes within one of the BCP blocks. We discuss the mechanism and the primary factors that are responsible for the sequestration and conformal replication of the BCP template by the inorganic material that is obtained after the polymer template is removed. X-ray photoelectron spectroscopy (XPS) and powder X-ray diffraction (PXRD) studies indicate that the metal oxidation state in the nanowires produced by plasma ashing the BCP template closely matches that of the precursor complex and that their structure is amorphous, thus requiring high-temperature annealing in order to sinter them into a crystalline form. Finally, we demonstrate how the developed nanowire array fabrication scheme can be used to rapidly pattern a multilayered iron oxide nanomesh, which we then used to construct a prototype volatile organic compound sensor.

6.
ACS Macro Lett ; 11(1): 121-126, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35574792

RESUMO

Solvent evaporation annealing (SEA) is a straightforward, single-step casting and annealing method of block copolymers (BCP) processing yielding large-grained morphologies in a very short time. Here, we present a quantitative analysis of BCP grain-coarsening in thin films under controlled evaporation of the solvent. Our study is aimed at understanding time and BCP concentration influence on the rate of the lateral growth of BCP grains. By systematically investigating the coarsening kinetics at various BCP concentrations, we observed a steeply decreasing exponential dependence of the kinetics power-law time exponent on polymer concentration. We used this dependence to formulate a mathematical model of BCP ordering under nonstationary conditions and a 2D, time- and concentration-dependent coarsening rate diagram, which can be used as an aid in engineering the BCP processing pathway in SEA and also in other directed self-assembly methods that utilize BCP-solvent interactions such as solvent vapor annealing.

7.
ACS Nano ; 14(4): 4805-4815, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32159943

RESUMO

Laser annealing is a competitive alternative to conventional oven annealing of block copolymer (BCP) thin films enabling rapid acceleration and precise spatial control of the self-assembly process. Localized heating by a moving laser beam (zone annealing), taking advantage of steep temperature gradients, can additionally yield aligned morphologies. In its original implementation it was limited to specialized germanium-coated glass substrates, which absorb visible light and exhibit low-enough thermal conductivity to facilitate heating at relatively low irradiation power density. Here, we demonstrate a recent advance in laser zone annealing, which utilizes a powerful fiber-coupled near-IR laser source allowing rapid BCP annealing over a large area on conventional silicon wafers. The annealing coupled with photothermal shearing yields macroscopically aligned BCP films, which are used as templates for patterning metallic nanowires. We also report a facile method of transferring laser-annealed BCP films onto arbitrary surfaces. The transfer process allows patterning substrates with a highly corrugated surface and single-step rapid fabrication of multilayered nanomaterials with complex morphologies.

8.
Macromolecules ; 53(24): 11178-11189, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33380751

RESUMO

We report a facile method of ordering block copolymer (BCP) morphologies in which the conventional two-step casting and annealing steps are replaced by a single-step process where microphase separation and grain coarsening are seamlessly integrated within the casting protocol. This is achieved by slowing down solvent evaporation during casting by introducing a nonvolatile solvent into the BCP casting solution that effectively prolongs the duration of the grain-growth phase. We demonstrate the utility of this solvent evaporation annealing (SEA) method by producing well-ordered large-molecular-weight BCP thin films in a total processing time shorter than 3 min without resorting to any extra laboratory equipment other than a basic casting device, i.e., spin- or blade-coater. By analyzing the morphologies of the quenched samples, we identify a relatively narrow range of polymer concentration in the wet film, just above the order-disorder concentration, to be critical for obtaining large-grained morphologies. This finding is corroborated by the analysis of the grain-growth kinetics of horizontally oriented cylindrical domains where relatively large growth exponents (1/2) are observed, indicative of a more rapid defect-annihilation mechanism in the concentrated BCP solution than in thermally annealed BCP melts. Furthermore, the analysis of temperature-resolved kinetics data allows us to calculate the Arrhenius activation energy of the grain coarsening in this one-step BCP ordering process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA