Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genomics ; 18(1): 46, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730490

RESUMO

BACKGROUND: Current clinical diagnosis pathway for lysosomal storage disorders (LSDs) involves sequential biochemical enzymatic tests followed by DNA sequencing, which is iterative, has low diagnostic yield and is costly due to overlapping clinical presentations. Here, we describe a novel low-cost and high-throughput sequencing assay using single-molecule molecular inversion probes (smMIPs) to screen for causative single nucleotide variants (SNVs) and copy number variants (CNVs) in genes associated with 29 common LSDs in India. RESULTS: 903 smMIPs were designed to target exon and exon-intron boundaries of targeted genes (n = 23; 53.7 kb of the human genome) and were equimolarly pooled to create a sequencing library. After extensive validation in a cohort of 50 patients, we screened 300 patients with either biochemical diagnosis (n = 187) or clinical suspicion (n = 113) of LSDs. A diagnostic yield of 83.4% was observed in patients with prior biochemical diagnosis of LSD. Furthermore, diagnostic yield of 73.9% (n = 54/73) was observed in patients with high clinical suspicion of LSD in contrast with 2.4% (n = 1/40) in patients with low clinical suspicion of LSD. In addition to detecting SNVs, the assay could detect single and multi-exon copy number variants with high confidence. Critically, Niemann-Pick disease type C and neuronal ceroid lipofuscinosis-6 diseases for which biochemical testing is unavailable, could be diagnosed using our assay. Lastly, we observed a non-inferior performance of the assay in DNA extracted from dried blood spots in comparison with whole blood. CONCLUSION: We developed a flexible and scalable assay to reliably detect genetic causes of 29 common LSDs in India. The assay consolidates the detection of multiple variant types in multiple sample types while having improved diagnostic yield at same or lower cost compared to current clinical paradigm.


Assuntos
Variações do Número de Cópias de DNA , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Doenças por Armazenamento dos Lisossomos , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/diagnóstico , Índia , Variações do Número de Cópias de DNA/genética , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único/genética , Feminino , Masculino , Sondas Moleculares/genética
2.
N Engl J Med ; 385(14): 1292-1301, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34587386

RESUMO

BACKGROUND: Structural birth defects occur in approximately 3% of live births; most such defects lack defined genetic or environmental causes. Despite advances in surgical approaches, pharmacologic prevention remains largely out of reach. METHODS: We queried worldwide databases of 20,248 families that included children with neurodevelopmental disorders and that were enriched for parental consanguinity. Approximately one third of affected children in these families presented with structural birth defects or microcephaly. We performed exome or genome sequencing of samples obtained from the children, their parents, or both to identify genes with biallelic pathogenic or likely pathogenic mutations present in more than one family. After identifying disease-causing variants, we generated two mouse models, each with a pathogenic variant "knocked in," to study mechanisms and test candidate treatments. We administered a small-molecule Wnt agonist to pregnant animals and assessed their offspring. RESULTS: We identified homozygous mutations in WLS, which encodes the Wnt ligand secretion mediator (also known as Wntless or WLS) in 10 affected persons from 5 unrelated families. (The Wnt ligand secretion mediator is essential for the secretion of all Wnt proteins.) Patients had multiorgan defects, including microcephaly and facial dysmorphism as well as foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects. The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis. Administration of a pharmacologic Wnt agonist partially restored embryonic development. CONCLUSIONS: Genetic variations affecting a central Wnt regulator caused syndromic structural birth defects. Results from mouse models suggest that what we have named Zaki syndrome is a potentially preventable disorder. (Funded by the National Institutes of Health and others.).


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Congênitas/genética , Pleiotropia Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Receptores Acoplados a Proteínas G/genética , Proteínas Wnt/metabolismo , Animais , Modelos Animais de Doenças , Fibroblastos/metabolismo , Técnicas de Introdução de Genes , Genes Recessivos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Transgênicos , Linhagem , Fenótipo , Receptores Acoplados a Proteínas G/metabolismo , Síndrome , Via de Sinalização Wnt
3.
Am J Hum Genet ; 105(2): 384-394, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31256876

RESUMO

Proteins anchored to the cell surface via glycosylphosphatidylinositol (GPI) play various key roles in the human body, particularly in development and neurogenesis. As such, many developmental disorders are caused by mutations in genes involved in the GPI biosynthesis and remodeling pathway. We describe ten unrelated families with bi-allelic mutations in PIGB, a gene that encodes phosphatidylinositol glycan class B, which transfers the third mannose to the GPI. Ten different PIGB variants were found in these individuals. Flow cytometric analysis of blood cells and fibroblasts from the affected individuals showed decreased cell surface presence of GPI-anchored proteins. Most of the affected individuals have global developmental and/or intellectual delay, all had seizures, two had polymicrogyria, and four had a peripheral neuropathy. Eight children passed away before four years old. Two of them had a clinical diagnosis of DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures), a condition that includes sensorineural deafness, shortened terminal phalanges with small finger and toenails, intellectual disability, and seizures; this condition overlaps with the severe phenotypes associated with inherited GPI deficiency. Most individuals tested showed elevated alkaline phosphatase, which is a characteristic of the inherited GPI deficiency but not DOORS syndrome. It is notable that two severely affected individuals showed 2-oxoglutaric aciduria, which can be seen in DOORS syndrome, suggesting that severe cases of inherited GPI deficiency and DOORS syndrome might share some molecular pathway disruptions.


Assuntos
Anormalidades Craniofaciais/etiologia , Glicosilfosfatidilinositóis/biossíntese , Glicosilfosfatidilinositóis/deficiência , Deformidades Congênitas da Mão/etiologia , Perda Auditiva Neurossensorial/etiologia , Deficiência Intelectual/etiologia , Manosiltransferases/genética , Doenças Metabólicas/etiologia , Mutação , Unhas Malformadas/etiologia , Doenças do Sistema Nervoso Periférico/etiologia , Convulsões/patologia , Adulto , Criança , Pré-Escolar , Anormalidades Craniofaciais/patologia , Feminino , Glicosilfosfatidilinositóis/genética , Deformidades Congênitas da Mão/patologia , Perda Auditiva Neurossensorial/patologia , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/patologia , Masculino , Doenças Metabólicas/patologia , Unhas Malformadas/patologia , Linhagem , Doenças do Sistema Nervoso Periférico/patologia , Convulsões/genética , Índice de Gravidade de Doença , Adulto Jovem
4.
Am J Med Genet A ; 188(6): 1904-1908, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35191187

RESUMO

Trisomy 18 or Edward syndrome is a chromosomal disorder due to the presence of an extra chromosome 18. We describe the phenotype of five fetuses at different gestational ages, each highlighting a different aspect of trisomy 18. The clinical spectrum included increased nuchal translucency, fetal hydrops, congenital malformations of the central nervous system, congenital heart disease, radial ray defects, and characteristic facial gestalt. We made a comparison of prenatal ultrasonography and the autopsy findings. The fetal autopsy defined the craniofacial and digit anomalies better compared with sonography. The facial features of tall forehead, hypoplastic nares, microstomia, micrognathia, low set abnormal ears along with clenched hands, and short hallux are typical for trisomy 18 and help in planning the targeted cytogenetic or molecular tests. The diagnosis was established by either fluorescence in situ hybridization or quantitative fluorescent polymerase chain reaction or chromosomal microarray in the patients. This communication emphasizes the importance of detailed assessment for craniofacial and limb anomalies on prenatal ultrasonography which can prompt an early evaluation for trisomy 18.


Assuntos
Trissomia , Ultrassonografia Pré-Natal , Feminino , Humanos , Hibridização in Situ Fluorescente , Fenótipo , Gravidez , Trissomia/diagnóstico , Trissomia/genética , Síndrome da Trissomía do Cromossomo 18/diagnóstico , Síndrome da Trissomía do Cromossomo 18/genética
5.
Am J Med Genet A ; 188(8): 2339-2350, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35499143

RESUMO

Pontocerebellar hypoplasia (PCH) type 12 is a rare, perinatal lethal neurodegenerative genetic disorder caused by biallelic mutations in the COASY gene. Herein, we describe the clinical and neuroradiological profile of nine affected fetuses/neonates from five families identified with a common COASY: c.1486-3C>G biallelic variant. Four of the five families were identified after data reanalysis of unresolved, severe PCH like phenotype and the fifth family through collaboration. The common antenatal phenotype was cerebellar hypoplasia. Microcephaly, arthrogryposis, and intrauterine growth restriction were the shared postnatal findings. The neurological manifestations included seizures, poor sucking, and spasticity. Novel findings of corpus callosum agenesis, simplified gyral pattern, normal sized pons, optic neuropathy, and a small thorax are reported in this series. The allele frequency of the COASY: c.1486-3C>G variant was 0.62% in the available Asian Indian database. We describe this as a possible common Indian origin variant. To the best of our knowledge, this is the largest PCH12 series reported.


Assuntos
Doenças Cerebelares , Microcefalia , Transferases , Doenças Cerebelares/genética , Feminino , Humanos , Microcefalia/genética , Mutação , Fenótipo , Gravidez , Transferases/genética
6.
J Am Soc Nephrol ; 32(1): 223-228, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33020172

RESUMO

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) are one of the most common malformations identified in the fetal stage. Bilateral renal agenesis (BRA) represents the most severe and fatal form of CAKUT. Only three genes have been confirmed to have a causal role in humans (ITGA8, GREB1L, and FGF20). METHODS: Genome sequencing within a diagnostic setting and combined data repository analysis identified a novel gene. RESULTS: Two patients presented with BRA, detected during the prenatal period, without additional recognizable malformations. They had parental consanguinity and similarly affected, deceased siblings, suggesting autosomal recessive inheritance. Evaluation of homozygous regions in patient 1 identified a novel, nonsense variant in GFRA1 (NM_001348097.1:c.676C>T, p.[Arg226*]). We identified 184 patients in our repository with renal agenesis and analyzed their exome/genome data. Of these 184 samples, 36 were from patients who presented with isolated renal agenesis. Two of them had loss-of-function variants in GFRA1. The second patient was homozygous for a frameshift variant (NM_001348097.1:c.1294delA, p.[Thr432Profs*13]). The GFRA1 gene encodes a receptor on the Wolffian duct that regulates ureteric bud outgrowth in the development of a functional renal system, and has a putative role in the pathogenesis of Hirschsprung disease. CONCLUSIONS: These findings strongly support the causal role of GFRA1-inactivating variants for an autosomal recessive, nonsyndromic form of BRA. This knowledge will enable early genetic diagnosis and better genetic counseling for families with BRA.


Assuntos
Alelos , Anormalidades Congênitas/genética , Genes Recessivos , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Nefropatias/congênito , Rim/anormalidades , Exoma , Feminino , Aconselhamento Genético , Predisposição Genética para Doença , Variação Genética , Genoma Humano , Homozigoto , Humanos , Rim/patologia , Nefropatias/genética , Masculino , Mutação , Linhagem , Análise de Sequência de DNA , Sistema Urinário/patologia
7.
Hum Mutat ; 42(4): e15-e61, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33502066

RESUMO

Given the genomic uniqueness, a local data set is most desired for Indians, who are underrepresented in existing public databases. We hypothesize patients with rare monogenic disorders and their family members can provide a reliable source of common variants in the population. Exome sequencing (ES) data from families with rare Mendelian disorders was aggregated from five centers in India. The dataset was refined by excluding related individuals and removing the disease-causing variants (refined cohort). The efficiency of these data sets was assessed in a new set of 50 exomes against gnomAD and GenomeAsia. Our original cohort comprised 1455 individuals from 1203 families. The refined cohort had 836 unrelated individuals that retained 1,251,064 variants with 181,125 population-specific and 489,618 common variants. The allele frequencies from our cohort helped to define 97,609 rare variants in gnomAD and 44,520 rare variants in GenomeAsia as common variants in our population. Our variant dataset provided an additional 1.7% and 0.1% efficiency for prioritizing heterozygous and homozygous variants respectively for rare monogenic disorders. We observed additional 19 genes/human knockouts. We list carrier frequency for 142 recessive disorders. This is a large and useful resource of exonic variants for Indians. Despite limitations, datasets from patients are efficient tools for variant prioritization in a resource-limited setting.


Assuntos
Exoma , Genômica , Exoma/genética , Frequência do Gene , Homozigoto , Humanos , Sequenciamento do Exoma
8.
Hum Mutat ; 42(10): 1336-1350, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34273913

RESUMO

Pathogenic variations in SMPD1 lead to acid sphingomyelinase deficiency (ASMD), that is, Niemann-Pick disease (NPD) type A and B (NPA, NPB), which is a recessive lysosomal storage disease. The knowledge of variant spectrum in Indian patients is crucial for early and accurate NPD diagnosis and genetic counseling of families. In this study, we recruited 40 unrelated pediatric patients manifesting symptoms of ASMD and subnormal ASM enzyme activity. Variations in SMPD1 were studied using Sanger sequencing for all exons, followed by interpretation of variants based on American College of Medical Genetics and Genomics & Association for Molecular Pathology (ACMG/AMP) criteria. We identified 18 previously unreported variants and 21 known variants, including missense, nonsense, deletions, duplications, and splice site variations with disease-causing potential. Eight missense variants were functionally characterized using in silico molecular dynamic simulation and in vitro transient transfection in HEK293T cells, followed by ASM enzyme assay, immunoblot, and immunofluorescence studies. All the variants showed reduced ASM activity in transfected cells confirming their disease-causing potential. The study provides data for efficient prenatal diagnosis and genetic counseling of families with NPD type A and B.


Assuntos
Doença de Niemann-Pick Tipo A , Doenças de Niemann-Pick , Esfingomielina Fosfodiesterase/genética , Criança , Éxons , Feminino , Células HEK293 , Humanos , Mutação , Doença de Niemann-Pick Tipo A/genética , Doença de Niemann-Pick Tipo A/patologia , Doenças de Niemann-Pick/diagnóstico , Doenças de Niemann-Pick/genética , Gravidez
9.
Clin Genet ; 100(5): 542-550, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34302356

RESUMO

Genetic disorders with predominant central nervous system white matter abnormalities (CNS WMAs), also called leukodystrophies, are heterogeneous entities. We ascertained 117 individuals with CNS WMAs from 104 unrelated families. Targeted genetic testing was carried out in 16 families and 13 of them received a diagnosis. Chromosomal microarray (CMA) was performed for three families and one received a diagnosis. Mendeliome sequencing was used for testing 11 families and all received a diagnosis. Whole exome sequencing (WES) was performed in 80 families and was diagnostic in 52 (65%). Singleton WES was diagnostic for 50/75 (66.67%) families. Overall, genetic diagnoses were obtained in 77 families (74.03%). Twenty-two of 47 distinct disorders observed in this cohort have not been reported in Indian individuals previously. Notably, disorders of nuclear mitochondrial pathology were most frequent (9 disorders in 20 families). Thirty-seven of 75 (49.33%) disease-causing variants are novel. To sum up, the present cohort describes the phenotypic and genotypic spectrum of genetic disorders with CNS WMAs in our population. It demonstrates WES, especially singleton WES, as an efficient tool in the diagnosis of these heterogeneous entities. It also highlights possible founder events and recurrent disease-causing variants in our population and their implications on the testing strategy.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Malformações do Sistema Nervoso/diagnóstico , Malformações do Sistema Nervoso/genética , Substância Branca/anormalidades , Alelos , Aberrações Cromossômicas , Consanguinidade , Família , Estudos de Associação Genética/métodos , Testes Genéticos , Humanos , Índia/epidemiologia , Análise em Microsséries , Mutação , Malformações do Sistema Nervoso/epidemiologia , Sequenciamento do Exoma
10.
Hum Mutat ; 41(9): 1469-1487, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32449975

RESUMO

Farber disease and spinal muscular atrophy with progressive myoclonic epilepsy are a spectrum of rare lysosomal storage disorders characterized by acid ceramidase deficiency (ACD), resulting from pathogenic variants in N-acylsphingosine amidohydrolase 1 (ASAH1). Other than simple listings provided in literature reviews, a curated, comprehensive list of ASAH1 mutations associated with ACD clinical phenotypes has not yet been published. This publication includes mutations in ASAH1 collected through the Observational and Cross-Sectional Cohort Study of the Natural History and Phenotypic Spectrum of Farber Disease (NHS), ClinicalTrials.gov identifier NCT03233841, in combination with an up-to-date curated list of published mutations. The NHS is the first to collect retrospective and prospective data on living and deceased patients with ACD presenting as Farber disease, who had or had not undergone hematopoietic stem cell transplantation. Forty-five patients representing the known clinical spectrum of Farber disease (living patients aged 1-28 years) were enrolled. The curation of known ASAH1 pathogenic variants using a single reference transcript includes 10 previously unpublished from the NHS and 63 that were previously reported. The publication of ASAH1 variants will be greatly beneficial to patients undergoing genetic testing in the future by providing a significantly expanded reference list of disease-causing variants.


Assuntos
Ceramidase Ácida/genética , Lipogranulomatose de Farber/genética , Atrofia Muscular Espinal/genética , Epilepsias Mioclônicas Progressivas/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Humanos , Lactente , Camundongos Knockout , Mutação , Adulto Jovem
11.
Am J Hum Genet ; 101(5): 803-814, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100091

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute a major cause of chronic kidney disease in children and 20% of prenatally detected anomalies. CAKUT encompass a spectrum of developmental kidney defects, including renal agenesis, hypoplasia, and cystic and non-cystic dysplasia. More than 50 genes have been reported as mutated in CAKUT-affected case subjects. However, the pathophysiological mechanisms leading to bilateral kidney agenesis (BKA) remain largely elusive. Whole-exome or targeted exome sequencing of 183 unrelated familial and/or severe CAKUT-affected case subjects, including 54 fetuses with BKA, led to the identification of 16 heterozygous variants in GREB1L (growth regulation by estrogen in breast cancer 1-like), a gene reported as a target of retinoic acid signaling. Four loss-of-function and 12 damaging missense variants, 14 being absent from GnomAD, were identified. Twelve of them were present in familial or simplex BKA-affected case subjects. Female BKA-affected fetuses also displayed uterus agenesis. We demonstrated a significant association between GREB1L variants and BKA. By in situ hybridization, we showed expression of Greb1l in the nephrogenic zone in developing mouse kidney. We generated a Greb1l knock-out mouse model by CRISPR-Cas9. Analysis at E13.5 revealed lack of kidneys and genital tract anomalies in male and female Greb1l-/- embryos and a slight decrease in ureteric bud branching in Greb1l+/- embryos. We showed that Greb1l invalidation in mIMCD3 cells affected tubulomorphogenesis in 3D-collagen culture, a phenotype rescued by expression of the wild-type human protein. This demonstrates that GREB1L plays a major role in early metanephros and genital development in mice and humans.


Assuntos
Anormalidades Congênitas/genética , Nefropatias/congênito , Rim/anormalidades , Mutação/genética , Proteínas de Neoplasias/genética , Proteínas/genética , Animais , Criança , Exoma/genética , Feminino , Feto/anormalidades , Heterozigoto , Humanos , Nefropatias/genética , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Sistema Urinário/anormalidades , Anormalidades Urogenitais/genética
12.
BMC Med Genet ; 21(1): 216, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33138774

RESUMO

BACKGROUND: To determine the carrier frequency and pathogenic variants of common genetic disorders in the north Indian population by using next generation sequencing (NGS). METHODS: After pre-test counselling, 200 unrelated individuals (including 88 couples) were screened for pathogenic variants in 88 genes by NGS technology. The variants were classified as per American College of Medical Genetics criteria. Pathogenic and likely pathogenic variants were subjected to thorough literature-based curation in addition to the regular filters. Variants of unknown significance were not reported. Individuals were counselled explaining the implications of the results, and cascade screening was advised when necessary. RESULTS: Of the 200 participants, 52 (26%) were found to be carrier of one or more disorders. Twelve individuals were identified to be carriers for congenital deafness, giving a carrier frequency of one in 17 for one of the four genes tested (SLC26A4, GJB2, TMPRSS3 and TMC1 in decreasing order). Nine individuals were observed to be carriers for cystic fibrosis, with a frequency of one in 22. Three individuals were detected to be carriers for Pompe disease (frequency one in 67). None of the 88 couples screened were found to be carriers for the same disorder. The pathogenic variants observed in many disorders (such as deafness, cystic fibrosis, Pompe disease, Canavan disease, primary hyperoxaluria, junctional epidermolysis bullosa, galactosemia, medium chain acyl CoA deficiency etc.) were different from those commonly observed in the West. CONCLUSION: A higher carrier frequency for genetic deafness, cystic fibrosis and Pompe disease was unexpected, and contrary to the generally held view about their prevalence in Asian Indians. In spite of the small sample size, this study would suggest that population-based carrier screening panels for India would differ from those in the West, and need to be selected with due care. Testing should comprise the study of all the coding exons with its boundaries in the genes through NGS, as all the variants are not well characterized. Only study of entire coding regions in the genes will detect carriers with adequate efficiency, in order to reduce the burden of genetic disorders in India and other resource poor countries.


Assuntos
Acil-CoA Desidrogenase/deficiência , Doença de Canavan/genética , Fibrose Cística/genética , Epidermólise Bolhosa Juncional/genética , Galactosemias/genética , Doença de Depósito de Glicogênio Tipo II/genética , Perda Auditiva Neurossensorial/genética , Hiperoxalúria Primária/genética , Erros Inatos do Metabolismo Lipídico/genética , Acil-CoA Desidrogenase/genética , Adulto , Doença de Canavan/epidemiologia , Conexina 26 , Conexinas/genética , Fibrose Cística/epidemiologia , Epidermólise Bolhosa Juncional/epidemiologia , Feminino , Galactosemias/epidemiologia , Expressão Gênica , Triagem de Portadores Genéticos/estatística & dados numéricos , Aconselhamento Genético , Doença de Depósito de Glicogênio Tipo II/epidemiologia , Perda Auditiva Neurossensorial/epidemiologia , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hiperoxalúria Primária/epidemiologia , Índia/epidemiologia , Erros Inatos do Metabolismo Lipídico/epidemiologia , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Mutação , Proteínas de Neoplasias/genética , Serina Endopeptidases/genética , Transportadores de Sulfato/genética
13.
J Pediatr ; 216: 44-50.e5, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31606152

RESUMO

OBJECTIVES: To evaluate the clinical and molecular spectrum, and factors affecting clinical outcome of patients in India diagnosed with infantile-onset Pompe disease (IOPD). STUDY DESIGN: In this multicenter, cross-sectional study, we evaluated the records of 77 patients with IOPD to analyze their clinical course, outcomes, and factors influencing the outcomes. RESULTS: Of the 77 patients with IOPD, phenotype data were available in 59; 46 (78%) had the classic phenotype. Overall, 58 of 77 (75%) and 19 of 77 (25%) patients were symptomatic before and after age 6 months, respectively. Alpha-glucosidase gene variant analysis available for 48 patients (96 alleles) showed missense variants in 49 alleles. Cross-reactive immunologic material (CRIM) status could be determined or predicted in 44 of 48 patients. In total, 32 of 44 patients (72%) were CRIM-positive, and 12 of 44 patients (27%) were CRIM-negative. Thirty-nine cases received enzyme-replacement therapy (ERT), alglucosidase alfa, and 38 patients never received ERT. Median age at initiation of ERT was 6.5 months. Response to ERT was better in babies who had CRIM-positive, non-classic IOPD. CONCLUSIONS: This study highlights the clinical spectrum of IOPD in India and provides an insight on various factors, such as undernutrition, feeding difficulties, and recurrent respiratory infection, as possible factors influencing clinical outcomes in these patients. The study also reiterates the importance of raising awareness among clinicians about the need for early diagnosis and timely treatment of IOPD.


Assuntos
Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/fisiopatologia , Idade de Início , Estudos Transversais , Feminino , Doença de Depósito de Glicogênio Tipo II/mortalidade , Doença de Depósito de Glicogênio Tipo II/terapia , Humanos , Índia/epidemiologia , Lactente , Recém-Nascido , Masculino , Fenótipo , Estudos Retrospectivos , Resultado do Tratamento
14.
J Hum Genet ; 65(11): 971-984, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32651481

RESUMO

Mucolipidosis (ML) (OMIM 607840 & 607838) is a rare autosomal recessive inherited disorder that occurs due to the deficiency of golgi enzyme uridine diphosphate (UDP)- N-acetylglucosamine-1-phosphotransferase (GlcNAc-phosphotransferase) responsible for tagging mannose-6-phosphate for proper trafficking of lysosomal enzymes to lysosomes. Variants in GlcNAc-phosphotransferase (GNPTAB (α, ß subunits) and GNPTG (γ subunits) are known to result in impaired targeting of lysosomal enzymes leading to Mucolipidosis (ML) Type II or Type III. We analyzed 69 Indian families of MLII/III for clinical features and molecular spectrum and performed in silico analysis for novel variants. We identified 38 pathogenic variants in GNPTAB and 5 pathogenic variants in GNPTG genes including missense, frame shift, deletion, duplication and splice site variations. A total of 26 novel variants were identified in GNPTAB and 4 in GNPTG gene. In silico studies using mutation prediction software like SIFT, Polyphen2 and protein structure analysis further confirmed the pathogenic nature of the novel sequence variants detected in our study. Except for a common variant c.3503_3504delTC in early onset MLII, we could not establish any other significant genotype and phenotype correlation. This is one of the largest studies reported till date on Mucolipidosis II/III in order to identify mutation spectrum and any recurrent mutations specific to the Indian ethnic population. The mutational spectrum information in Indian patients will be useful in better genetic counselling, carrier detection and prenatal diagnosis for patients with ML II/III.


Assuntos
Mucolipidoses/genética , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Adolescente , Adulto , Povo Asiático/genética , Criança , Pré-Escolar , Éxons/genética , Feminino , Mutação da Fase de Leitura/genética , Deleção de Genes , Duplicação Gênica/genética , Genótipo , Humanos , Índia/epidemiologia , Lisossomos/genética , Masculino , Manosefosfatos/genética , Mucolipidoses/epidemiologia , Mucolipidoses/patologia , Mutação de Sentido Incorreto/genética , Isoformas de Proteínas/genética , Adulto Jovem
15.
Am J Med Genet A ; 182(5): 953-956, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32128942

RESUMO

Wiedemann-Steiner syndrome (WWS) is a rare disorder characterized by hypotonia, postnatal growth restriction, striking facial dysmorphism, and hirsutism. It is caused by heterozygous pathogenic variants in KMT2A. This gene has an established role in histone methylation, which explains the overlap of WWS with syndromes caused by genes involved in chromatin remodeling. We describe an infant with a novel single base pair deletion in KMT2A with features consistent with WWS, as well as additional features of stenosis of aqueduct of Sylvius and broad toes. The usefulness of Face2Gene as a tool for identification of dysmorphology syndromes is discussed, as in this patient, it suggested WWS as the top candidate disorder. To the best of our knowledge, this is the first patient of WWS reported from India, with a novel genotype and expanded phenotype.


Assuntos
Anormalidades Múltiplas/genética , Contratura/genética , Transtornos do Crescimento/genética , Histona-Lisina N-Metiltransferase/genética , Deficiência Intelectual/genética , Microcefalia/genética , Anormalidades Musculoesqueléticas/genética , Proteína de Leucina Linfoide-Mieloide/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/epidemiologia , Anormalidades Múltiplas/fisiopatologia , Contratura/diagnóstico , Contratura/epidemiologia , Contratura/fisiopatologia , Fácies , Feminino , Genótipo , Transtornos do Crescimento/diagnóstico , Transtornos do Crescimento/epidemiologia , Transtornos do Crescimento/fisiopatologia , Heterozigoto , Humanos , Índia/epidemiologia , Lactente , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/fisiopatologia , Masculino , Microcefalia/diagnóstico , Microcefalia/epidemiologia , Microcefalia/fisiopatologia , Anormalidades Musculoesqueléticas/diagnóstico , Anormalidades Musculoesqueléticas/epidemiologia , Anormalidades Musculoesqueléticas/fisiopatologia , Mutação/genética , Fenótipo
16.
Genet Med ; 21(9): 2043-2058, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30842647

RESUMO

PURPOSE: Microcephaly is a sign of many genetic conditions but has been rarely systematically evaluated. We therefore comprehensively studied the clinical and genetic landscape of an unselected cohort of patients with microcephaly. METHODS: We performed clinical assessment, high-resolution chromosomal microarray analysis, exome sequencing, and functional studies in 62 patients (58% with primary microcephaly [PM], 27% with secondary microcephaly [SM], and 15% of unknown onset). RESULTS: We found severity of developmental delay/intellectual disability correlating with severity of microcephaly in PM, but not SM. We detected causative variants in 48.4% of patients and found divergent inheritance and variant pattern for PM (mainly recessive and likely gene-disrupting [LGD]) versus SM (all dominant de novo and evenly LGD or missense). While centrosome-related pathways were solely identified in PM, transcriptional regulation was the most frequently affected pathway in both SM and PM. Unexpectedly, we found causative variants in different mitochondria-related genes accounting for ~5% of patients, which emphasizes their role even in syndromic PM. Additionally, we delineated novel candidate genes involved in centrosome-related pathway (SPAG5, TEDC1), Wnt signaling (VPS26A, ZNRF3), and RNA trafficking (DDX1). CONCLUSION: Our findings enable improved evaluation and genetic counseling of PM and SM patients and further elucidate microcephaly pathways.


Assuntos
Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Microcefalia/genética , Adolescente , Proteínas de Ciclo Celular/genética , Criança , Pré-Escolar , RNA Helicases DEAD-box/genética , Deficiências do Desenvolvimento/patologia , Exoma/genética , Feminino , Regulação da Expressão Gênica/genética , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Microcefalia/patologia , Mutação , Linhagem , Fenótipo , Ubiquitina-Proteína Ligases/genética , Sequenciamento do Exoma , Via de Sinalização Wnt
17.
BMC Med Genet ; 20(1): 31, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30764785

RESUMO

BACKGROUND: Gaucher disease is a rare pan-ethnic, lysosomal storage disorder resulting due to beta-Glucosidase (GBA1) gene defect. This leads to the glucocerebrosidase enzyme deficiency and an increased accumulation of undegraded glycolipid glucocerebroside inside the cells' lysosomes. To date, nearly 460 mutations have been described in the GBA1 gene. With the aim to determine mutations spectrum and molecular pathology of Gaucher disease in India, the present study investigated one hundred unrelated patients (age range: 1 day to 31 years) having splenomegaly, with or without hepatomegaly, cytopenia and bone abnormality in some of the patients. METHODS: The biochemical investigation for the plasma chitotriosidase enzyme activity and ß-Glucosidase enzyme activity confirmed the Gaucher disease. The mutations were identified by screening the patients' whole GBA gene coding region using bidirectional Sanger sequencing. RESULTS: The biochemical analysis revealed a significant reduction in the ß-Glucosidase activity in all patients. Sanger sequencing established 71 patients with homozygous mutation and 22 patients with compound heterozygous mutation in GBA1 gene. Lack of identification of mutations in three patients suggests the possibility of either large deletion/duplication or deep intronic variations in the GBA1 gene. In four cases, where the proband died due to confirmed Gaucher disease, the parents were found to be a carrier. Overall, the study identified 33 mutations in 100 patients that also covers four missense mutations (p.Ser136Leu, p.Leu279Val, p.Gly383Asp, p.Gly399Arg) not previously reported in Gaucher disease patients. The mutation p.Leu483Pro was identified as the most commonly occurring Gaucher disease mutation in the study (62% patients). The second common mutations identified were p.Arg535Cys (7% patients) and RecNcil (7% patients). Another complex mutation Complex C was identified in a compound heterozygous status (3% patients). The homology modeling of the novel mutations suggested the destabilization of the GBA protein structure due to conformational changes. CONCLUSIONS: The study reports four novel and 29 known mutations identified in the GBA1 gene in one-hundred Gaucher patients. The given study establishes p.Leu483Pro as the most prevalent mutation in the Indian patients with type 1 Gaucher disease that provide new insight into the molecular basis of Gaucher Disease in India.


Assuntos
Doença de Gaucher/genética , Glucosilceramidase/genética , Mutação , Análise de Sequência de DNA/métodos , População Branca/genética , Adolescente , Adulto , Substituição de Aminoácidos , Criança , Pré-Escolar , Éxons , Feminino , Doença de Gaucher/metabolismo , Glucosilceramidase/química , Glucosilceramidase/metabolismo , Humanos , Índia , Lactente , Recém-Nascido , Masculino , Modelos Moleculares , Homologia Estrutural de Proteína , Adulto Jovem
18.
J Hum Genet ; 64(10): 985-994, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31388111

RESUMO

Tay-Sachs disease (TSD) (OMIM) is a neurodegenerative lysosomal storage disorder caused due to mutations in the HEXA gene. To date, nearly 190 mutations have been reported in HEXA gene. Here, we have characterized 34 enzymatically confirmed TSD families to investigate the presence of novel as well as known variants in HEXA gene. Overall study detected 25 variants belonging to 31 affected TSD patients and 3 carrier couples confirmed by enzyme study. Of these 17 patients harbors 15 novel variants, including seven missense variants [p.V206L, p.Y213H, p.R252C, p.F257S, p.C328G, p.G454R, and p.P475R], four nonsense variant [p.S9X, p.E91X, p.W420X, and p.W482X], two splice site variants [c.347-1G>A and c.460-1G>A], and two small deletion [c.1349delC (p.A450VfsX3) and c.52delG (p.G18Dfs*82)]. While remaining 17 patients harbors 10 previously reported variants that includes six missense variants [p.M1T, p.R170Q, p.D322Y, p.D322N, p.E462V, and p.R499C], one nonsense variant [p.Q106X], two splice site variants [c.1073+1G>A and c.459+4A>G] and one 4 bp insertion [c.1278insTATC (p.Y427IfsX5)]. In conclusion, Indian infantile TSD patients provide newer insight into the molecular heterogeneity of the TSD. Combining present study and our earlier studies, we have observed that 67% genotypes found in Indian TSD patients are novel, which are associated with severe infantile phenotypes, while rest 33% genotypes found in our cohort were previously reported in various populations. In addition, higher frequency of the p.E462V and c.1278insTATC mutations in the present study further support and suggest the prevalence of p.E462V mutation in the Indian population.


Assuntos
Doença de Tay-Sachs/genética , Cadeia alfa da beta-Hexosaminidase/genética , Alelos , Pré-Escolar , Códon sem Sentido , Demografia , Feminino , Estudos de Associação Genética , Humanos , Índia , Lactente , Masculino , Mutação de Sentido Incorreto , Deleção de Sequência , Doença de Tay-Sachs/enzimologia , Doença de Tay-Sachs/fisiopatologia , Cadeia alfa da beta-Hexosaminidase/química
19.
Am J Med Genet A ; 179(3): 480-485, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30690882

RESUMO

Congenital disorders of glycosylation (CDG) are an extremely rapidly growing and phenotypically versatile group of disorders. Conserved oligomeric Golgi (COG) complexes are hetero-octameric proteins involved in retrograde trafficking within the Golgi. Seven of its eight subunits have a causal role in CDG. To date, only three cases of COG8-CDG have been published but none in the antenatal period. We present the first case of antenatally diagnosed COG8-CDG with facial dysmorphism and additional features such as Dandy-Walker malformation and arthrogryposis multiplex congenita, thus expanding the phenotype of this rare disorder. Trio whole exome sequencing revealed a novel homozygous variant in COG8, which creates a new splice site in exon 5 and protein truncation after 12 amino acids downstream to the newly generated splice site. As the mutations of the previous three patients were also identified in exon 5, it is likely to be a potential mutational hotspot in COG8. An association between antenatally increased nuchal translucency and COG8-CDG is also established, which would alert clinicians to its diagnosis early in gestation. It remains to be seen if this observation can be extended to other COG-CDGs.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Mutação , Fenótipo , Sítios de Splice de RNA , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Sequência de Bases , Éxons , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Recém-Nascido , Íntrons , Masculino , Radiografia , Análise de Sequência de DNA , Ultrassonografia Pré-Natal
20.
Am J Med Genet A ; 179(6): 1091-1097, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30908877

RESUMO

The neurofibromatoses, which include neurofibromatosis type I (NF1), neurofibromatosis type II (NF2), and schwannomatosis, are a group of syndromes characterized by tumor growth in the nervous system. The RASopathies are a group of syndromes caused by germline mutations in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) pathway. The RASopathies include NF1, Noonan syndrome, Noonan syndrome with multiple lentigines, Costello syndrome, cardio-facio-cutaneous syndrome, Legius syndrome, capillary malformation arterio-venous malformation syndrome, and SYNGAP1 autism. Due to their common underlying pathogenetic etiology, all these syndromes have significant phenotypic overlap of which one common feature include a predisposition to tumors, which may be benign or malignant. Together as a group, they represent one of the most common multiple congenital anomaly syndromes estimating to affect approximately one in 1000 individuals worldwide. The subcontinent of India represents one of the largest populations in the world, yet remains underserved from an aspect of clinical genetics services. In an effort to bridge this gap, the First International Conference on RASopathies and Neurofibromatoses in Asia: Identification and Advances of New Therapeutics was held in Kochi, Kerala, India. These proceedings chronicle this timely and topical international symposium directed at discussing the best practices and therapies for individuals with neurofibromatoses and RASopathies.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas Quinases Ativadas por Mitógeno/genética , Neurofibromatoses/etiologia , Proteínas ras/genética , Biomarcadores , Gerenciamento Clínico , Estudos de Associação Genética/métodos , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Técnicas de Diagnóstico Molecular , Terapia de Alvo Molecular , Neurofibromatoses/diagnóstico , Neurofibromatoses/terapia , Transdução de Sinais , Pesquisa Translacional Biomédica , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA