Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175309

RESUMO

The main objective of this research was to develop novel compounds from readily accessed natural products especially eugenol with potential biological activity. Eugenol, the principal chemical constituent of clove (Eugenia caryophyllata) from the family Myrtaceae is renowned for its pharmacological properties, which include analgesic, antidiabetic, antioxidant, anticancer, and anti-inflammatory effects. According to reports, PPARγ regulates inflammatory reactions. The synthesized compounds were structurally analyzed using FT-IR, 1HNMR, 13CNMR, and mass spectroscopy techniques. Molecular docking was performed to analyze binding free energy and important amino acids involved in the interaction between synthesized derivatives and the target protein. The development of the structure-activity relationship is based on computational studies. Additionally, the stability of the best-docked protein-ligand complexes was assessed using molecular dynamic modeling. The in-vitro PPARγ competitive binding Lanthascreen TR-FRET assay was used to confirm the affinity of compounds to the target protein. All the synthesized derivatives were evaluated for an in vitro anti-inflammatory activity using an albumin denaturation assay and HRBC membrane stabilization at varying concentrations from 6.25 to 400 µM. In this background, with the aid of computational research, we were able to design six novel derivatives of eugenol synthesized, analyzed, and utilized TR-FRET competitive binding assay to screen them for their ability to bind PPARγ. Anti-inflammatory activity evaluation through in vitro albumin denaturation and HRBC method revealed that 1f exhibits maximum inhibition of heat-induced albumin denaturation at 50% and 85% protection against HRBC lysis at 200 and 400 µM, respectively. Overall, we found novel derivatives of eugenol that could potentially reduce inflammation by PPARγ agonism.


Assuntos
Eugenol , PPAR gama , Humanos , Eugenol/farmacologia , PPAR gama/metabolismo , Simulação de Acoplamento Molecular , Agonistas PPAR-gama , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Inflamatórios/farmacologia , Inflamação , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Albuminas
2.
Antibiotics (Basel) ; 12(7)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37508263

RESUMO

In recent years, N-Myristoyltransferase (NMT) has been identified as a new target for the treatment of fungal infections. It is observed that at present, there are increased rates of morbidity and mortality due to fungal infections. Hence, a series of novel myristic acid derivatives were designed via molecular docking studies and ADMET studies by targeting NMT (N-Myristoyltransferase). The designed myristic acid derivatives were synthesized by converting myristic acid into myristoyl chloride and coupling it with aryl amines to yield corresponding myristic acid derivatives. The compounds were purified and characterized via FTIR, NMR and HRMS spectral analyses. In this study, we carried out a target NMT inhibition assay. In the NMT screening assay results, the compounds 3u, 3m and 3t showed better inhibition compared to the other myristic acid derivatives. In an in vitro antifungal evaluation, the myristic acid derivatives were assessed against Candida albicans and Aspergillus niger strains by determining their minimal inhibitory concentrations (MIC50). The compounds 3u, 3k, 3r and 3t displayed superior antifungal capabilities against Candida albicans, and the compounds 3u, 3m and 3r displayed superior antifungal capabilities against Aspergillus niger compared to the standard drug FLZ (fluconazole). Altogether, we identified a new series of antifungal agents.

3.
RSC Adv ; 12(26): 16966-16978, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35754905

RESUMO

Eugenol is a natural product abundantly found in clove buds known for its pharmacological activities such as anti-inflammatory, antidiabetic, antioxidant, and anticancer activities. It is well known from the literature that peroxisome proliferator-activated receptors (PPARγ) have been reported to regulate inflammatory responses. In this backdrop, we rationally designed semi-synthetic derivatives of eugenol with the aid of computational studies, and synthesized, purified, and analyzed four eugenol derivatives as PPARγ agonists. Compounds were screened for PPARγ protein binding by time-resolved fluorescence (TR-FRET) assay. The biochemical assay results were favorable for 1C which exhibited significant binding affinity with an IC50 value of 10.65 µM as compared to the standard pioglitazone with an IC50 value of 1.052 µM. In addition to the protein binding studies, as a functional assay, the synthesized eugenol derivatives were screened for in vitro anti-inflammatory activity at concentrations ranging from 6.25 µM to 400 µM. Among the four compounds tested 1C shows reasonably good anti-inflammatory activity with an IC50 value of 133.8 µM compared to a standard diclofenac sodium IC50 value of 54.32 µM. Structure-activity relationships are derived based on computational studies. Additionally, molecular dynamics simulations were performed to examine the stability of the protein-ligand complex, the dynamic behavior, and the binding affinity of newly synthesized molecules. Altogether, we identified novel eugenol derivatives as potential anti-inflammatory agents via PPARγ agonism.

4.
Eur J Med Chem ; 84: 516-29, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25055342

RESUMO

A new series of new diphenylamine containing 1,2,4-triazoles were synthesized from 4-arylideneamino-5-[2-(2,6-dichlorophenylamino) benzyl]-2H-1,2,4-triazole-3(4H)-thiones 3a-f. The synthesized compounds were screened for in-vitro antimycobacterial and antibacterial activities. The synthesized compounds 4a, 4e and 4d have shown potential activity against Mycobacterium tuberculosis H37Rv strain with MIC of 0.2, 1.6 and 3.125 µM respectively. To investigate the SAR of diphenylamine containing 1,2,4-triazole derivatives in more details, CoMFA (q(2)-0.432, r(2)-0.902) and CoMSIA (q(2)-0.511, r(2)-0.953) models on M. tuberculosis H37Rv were established. The generated 3D-QSAR models are externally validated and have shown significant statistical results, and these models can be used for further rational design of novel diphenylamine containing 1,2,4-triazoles as potent antitubercular agents.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Difenilamina/farmacologia , Desenho de Fármacos , Relação Quantitativa Estrutura-Atividade , Triazóis/química , Animais , Antibacterianos/síntese química , Antibacterianos/química , Chlorocebus aethiops , Difenilamina/síntese química , Difenilamina/química , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Células Vero
5.
Med Chem ; 9(8): 1063-72, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23106284

RESUMO

Synthesis and evaluation of cytotoxicity of a series of heterocyclic compounds derived from 1, 4-bis-(5- [hydrazinocarbonylmethylthio]-4-phenyl-1,2,4-triazol-3-yl) butane (1a-b) are described. The triazolo-triazoles (9-15) and thiadiazoles (16-18) were prepared from respective thiosemicarbazide intermediates (2-8). The Schiff bases (19-24) were prepared from (1a, b) by reacting with different carboxaldehydes in acetic acid medium. All the synthesized compounds were characterized by IR, NMR and Mass spectral studies. The compounds were evaluated for in vitro cytotoxicity potential using the standard MTT assay against a panel of three human cancer cell lines: Lung carcinoma A-549, Colon carcinoma HT-29 and Breast Cancer MDA MB-231. The DNA damage activity of the compound 24 was evaluated by alkaline comet assay.


Assuntos
Antineoplásicos/farmacologia , Dano ao DNA , Compostos Heterocíclicos/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
6.
Nucleosides Nucleotides Nucleic Acids ; 30(11): 873-85, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22060552

RESUMO

In the present study, we have tested the cytotoxic and DNA damage activity of two novel bis-1,2,4 triazole derivatives, namely 1,4-bis[5-(5-mercapto-1,3,4-oxadiazol-2-yl-methyl)-thio-4-(p-tolyl)-1,2,4-triazol-3-yl]-butane (MNP-14) and 1,4-bis[5-(carbethoxy-methyl)-thio-4-(p-ethoxy phenyl) -1,2,4-triazol-3-yl]-butane (MNP-16). The effect of these molecules on cellular apoptosis was also determined. The in-vitro cytotoxicity was evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay as well as Trypan blue dye exclusion methods against human acute lymphoblastic leukemia (MOLT4) and lung cancer cells (A549). Our results showed that MNP-16 induced significant cytotoxicity (IC(50) of 3-5 µM) compared with MNP-14. The cytotoxicity induced by MNP-16 was time and concentration dependent. The cell cycle analysis by flow cytometry (fluorescence-activated cell sorting [FACS]) revealed that though there was a significant increase in the apoptotic population (sub-G(1) phase) with an increased concentration of MNP-14 and 16, there was no cell cycle arrest. Further, the comet assay results indicated considerable DNA strand breaks upon exposure to these compounds, thereby suggesting the possible mechanism of cytotoxicity induced by MNP-16. Hence, we have identified a novel molecule (MNP-16) which could be of great clinical relevance in cancer therapeutics.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Butanos/química , Butanos/farmacologia , Triazóis/química , Triazóis/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA