Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 9(5): e16232, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37251879

RESUMO

Highly-effective photocatalyst of NiO/g-C3N4 with was successfully synthesized by using phyto-mediated-synthesized nickel nanoparticles. The preparation was initiated by synthesizing nickel nanoparticles by using Tinosphora cordifolia stem extract under ultrasound-assisted method followed by the dispersing onto g-C3N4 structure. The study focused on physicochemical characterization and photocatalytic activity as function of the percentage of Ni in the nanocomposite. The photocatalytic activity examinations were carried out to rhodamine B and tetracycline photocatalytic oxidation. The results demonstrated that graphitic carbon nitride is effectively improved the photocatalytic activity of NiO for both photocatalytic oxidation reactions. From the varied Ni content of 5; 10; and 20 %wt., it was also found that the highest photoactivity was achieved by the composite having 10 %wt. of nickel content. The high effectivity was showed by degradation efficiency of 95% toward Rhodamine B and 98% toward tetracycline. The examination on effect of scavengers suggests that Z-scheme involved in the photocatalytic mechanism which facilitated the efficient separation of the photogenerated electron-hole pairs under visible light illumination. In summary, the present findings provide a green approach for fabricating the effective photocatalysts for organic contaminant degradation.

2.
J Funct Biomater ; 13(2)2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35735939

RESUMO

Preparation of green synthesized silver nanoparticle (AgNPs)-doped hydroxyapatite (Ag/HA) utilizing Curcuma longa leaf extract and land snail (Achatina fulica) shell waste was performed. Physicochemical characteristics and antibacterial activity of Ag/HA composite as a function of Ag content was studied. Instrumental analysis such as XRD, SEM-EDX, TEM, and XPS were employed to characterize the nanocomposites. The physicochemical study revealed the maintained porous structure of HA after Ag immobilization, and from TEM analyses, it was found that the distributed spherical particles are associated with the dispersed Ag and have a particle diameter of around 5-25 nm. Antibacterial activity of the nanocomposite was evaluated against Escherichia coli, Staphylococcus aureus, Kliebsiella, pneumonia, and Streptococcus pyogenes. The results showed that the varied Ag content (1.0; 1.6; and 2.4% wt) influenced the nanoparticle distribution in the nanocomposite and enhanced the antibacterial feature.

3.
Nanomaterials (Basel) ; 11(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34947775

RESUMO

In this work, photoactive nanocomposites of ZnO/SiO2 porous heterostructures (PCHs) were prepared from montmorillonite clay. The effects of preparation methods and Zn content on the physicochemical features and photocatalytic properties were investigated. Briefly, a comparison of the use of hydrothermal and microwave-assisted methods was done. The Zn content was varied between 5 and 15 wt% and the characteristics of the nanomaterials were also examined. The physical and chemical properties of the materials were characterized using X-ray diffraction, diffuse-reflectance UV-Vis, X-ray photoelectron spectroscopy, and gas sorption analyses. The morphology of the synthesized materials was characterized through scanning electron microscopy and transmission electron microscopy. The photocatalytic performance of the prepared materials was quantified through the photocatalytic degradation of methyl violet (MV) under irradiation with UV and visible light. It was found that PCHs exhibit greatly improved physicochemical characteristics as photocatalysts, resulting in boosting photocatalytic activity for the degradation of MV. It was found that varied synthesis methods and Zn content strongly affected the specific surface area, pore distribution, and band gap energy of PCHs. In addition, the band gap energy was found to govern the photoactivity. Additionally, the surface parameters of the PCHs were found to contribute to the degradation mechanism. It was found that the prepared PCHs demonstrated excellent photocatalytic activity and reusability, as seen in the high degradation efficiency attained at high concentrations. No significant changes in activity were seen until five cycles of photodegradation were done.

4.
Nanomaterials (Basel) ; 11(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34835776

RESUMO

The present study reported biofabrication of flower-like SnO2 nanoparticles using Pometia pinnata leaf extract. The study focused on the physicochemical characteristics of the prepared SnO2 nanoparticles and its activity as photocatalyst and antibacterial agent. The characterization was performed by XRD, SEM, TEM, UV-DRS and XPS analyses. Photocatalytic activity of the nanoparticles was examined on bromophenol blue photooxidation; meanwhile, the antibacterial activity was evaluated against Klebsiella pneumoniae, Escherichia coli Staphylococcus aureus and Streptococcus pyogenes. XRD and XPS analyses confirmed the single tetragonal SnO2 phase. The result from SEM analysis indicates the flower like morphology of SnO2 nanoparticles, and by TEM analysis, the nanoparticles were seen to be in uniform spherical shapes with a diameter ranging from 8 to 20 nm. SnO2 nanoparticles showed significant photocatalytic activity in photooxidation of bromophenol blue as the degradation efficiency reached 99.93%, and the photocatalyst exhibited the reusability as the degradation efficiency values were insignificantly changed until the fifth cycle. Antibacterial assay indicated that the synthesized SnO2 nanoparticles exhibit an inhibition of tested bacteria and showed a potential to be applied for further environmental and medical applications.

5.
RSC Adv ; 10(61): 37576-37581, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35521234

RESUMO

Single-phase InN nanocrystals were synthesized for the first time by a molten salt-based nitridation approach using InCl3 and LiNH2 as indium and nitrogen sources, respectively. A molten salt, KCl-LiCl, during nitridation, enabled us to obtain InN nanocrystals at relatively low temperatures ranging from 400 °C to 500 °C. SEM and HR-TEM measurements coupled with XRD data revealed that InN nanocrystals were formed with average grain sizes of approximately 50-60 nm. Notably, the photoelectrochemical cell fabricated using the InN nanocrystals synthesized at 450 °C exhibited a photocurrent response under light irradiation from 400 nm to 880 nm. The precise control of the growth of InN particles using our synthetic approach provides opportunities for developing versatile nitride nanocrystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA