RESUMO
The cell wall of plants and algae is an important cell structure that protects cells from changes in the external physical and chemical environment. This extracellular matrix, composed of polysaccharides and glycoproteins, must be constantly remodeled throughout the life cycle. However, compared to matrix polysaccharides, little is known about the mechanisms regulating the formation and degradation of matrix glycoproteins. We report here that a plant kinase belonging to the DUAL-SPECIFICITY TYROSINE PHOSPHORYLATION-REGULATED KINASE (DYRK) family present in all eukaryotes regulates cell wall degradation after mitosis of Chlamydomonas reinhardtii by inducing the expression of matrix metalloproteinases (MMPs). Without the plant DYRK kinase (DYRKP1), daughter cells cannot disassemble parental cell walls and remain trapped inside for more than 10 days. On the other hand, the DYRKP1 complementation line shows normal degradation of the parental cell wall. Transcriptomic and proteomic analyses indicate a marked down-regulation of MMP gene expression and accumulation, respectively, in the dyrkp1 mutants. The mutants deficient in MMPs retain palmelloid structures for a longer time than the background strain, like dyrkp1 mutants. Our findings show that DYRKP1, by ensuring timely MMP expression, enables the successful execution of the cell cycle. Altogether, this study provides insight into the life cycle regulation in plants and algae.
RESUMO
The control of starch granule initiation in plant leaves is a complex process that requires active enzymes like Starch Synthase 4 and 3 (SS4 or SS3) and several noncatalytic proteins such as Protein Involved in starch Initiation 1 (PII1). In Arabidopsis leaves, SS4 is the main enzyme that control starch granule initiation, but in its absence, SS3 partly fulfills this function. How these proteins collectively act to control the initiation of starch granules remains elusive. PII1 and SS4 physically interact, and PII1 is required for SS4 to be fully active. However, Arabidopsis mutants lacking SS4 or PII1 still accumulate starch granules. Combining pii1 KO mutation with either ss3 or ss4 KO mutations provide new insights of how the remaining starch granules are synthesized. The ss3 pii1 line still accumulates starch, while the phenotype of ss4 pii1 is stronger than that of ss4. Our results indicate first that SS4 initiates starch granule synthesis in the absence of PII1 albeit being limited to one large lenticular granule per plastid. Second, that if in the absence of SS4, SS3 is able to initiate starch granules with low efficiency, this ability is further reduced with the additional absence of PII1.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Sintase do Amido , Arabidopsis/metabolismo , Amido/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Sintase do Amido/genética , Folhas de Planta/metabolismo , Mutação/genéticaRESUMO
Lignin-containing cellulose nanofibrils (LCNFs) have attracted great attention because the presence of lignin brought additional merits to cellulose nanofibrils including hydrophobicity, ultraviolet (UV)-shielding capacity, and reduced water sensitivity. In the present work, LCNFs with lignin content up to 21 wt % were prepared with a high yield exceeding 70 wt %, from neat date palm waste, by a hydrothermal treatment (HTT) at 120-150 °C in the presence of 20-30 wt % maleic acid, followed by high-pressure homogenization. The chemical composition, degree of polymerization, morphology, and colloidal and rheological properties of the LCNFs were investigated to understand how the HTT in the presence of MA affected the properties of the resulting LCNFs. Nanopapers prepared from the LCNF suspensions exhibited mechanical properties lower than those from lignin-free CNF-based nanopapers, yet with decreased hydrophilicity. A mechanism explaining how the HTT in the presence of MA facilitated the disintegration of the biomass into nanoscale material was proposed. Overall, the present work demonstrated a feasible and scalable approach for the sustainable production of LCNF suspensions from neat agricultural residues, with a high yield and a high lignin content, without any need to perform a preliminary partial delignification.
Assuntos
Nanofibras , Phoeniceae , Celulose/química , Lignina/química , Suspensões , Nanofibras/químicaRESUMO
Influenza viruses bind to their target through a multivalent interaction of their hemagglutinins (HAs) with sialosides at the host cell surface. To fight the virus, one therapeutic approach consists in developing sialylated multivalent structures that can saturate the virus HAs and prevent the binding to host cells. We describe herein the biotechnological production of sialylated solid lipid microparticles (SSLMs) in 3 steps: (i) a microbiological step leading to the large-scale production of sialylated maltodextrins by metabolic engineering of an Escherichia coli strain, (ii) a new in vitro glycosylation process using the amylomaltase MalQ, based on the transglycosylation of the terminal sialoside ligand of the sialylated maltodextrin onto a long-chain alkyl glucoside, and (iii) the formulation of the final SSLMs presenting a multivalent sialic acid. We also describe the morphology and structure of the SSLMs and demonstrate their very promising properties as influenza virus inhibitors using hemagglutination inhibition and microneutralization assays on the human A/H1N1 pdm09 virus.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A/metabolismo , Influenza Humana/tratamento farmacológico , Hemaglutininas Virais , Lipídeos , Glicoproteínas de Hemaglutininação de Vírus da InfluenzaRESUMO
In the nanomedicine field, there is a need to widen the availability of nanovectors to compensate for the increasingly reported side effects of poly(ethene glycol). Nanovectors enabling cross-linking can further optimize drug delivery. Cross-linkable polyoxazolines are therefore relevant candidates to address these two points. Here we present the synthesis of coumarin-functionalized poly(2-alkyl-2-oxazoline) block copolymers, namely, poly(2-methyl-2-oxazoline)-block-poly(2-phenyl-2-oxazoline) and poly(2-methyl-2-oxazoline)-block-poly(2-butyl-2-oxazoline). The hydrophilic ratio and molecular weights were varied in order to obtain a range of possible behaviors. Their self-assembly after nanoprecipitation or film rehydration was examined. The resulting nano-objects were fully characterized by transmission electron microscopy (TEM), cryo-TEM, multiple-angle dynamic and static light scattering. In most cases, the formation of polymer micelles was observed, as well as, in some cases, aggregates, which made characterization more difficult. Cross-linking was performed under UV illumination in the presence of a coumarin-bearing cross-linker based on polymethacrylate derivatives. Addition of the photo-cross-linker and cross-linking resulted in better-defined objects with improved stability in most cases.
Assuntos
Poliaminas , Polímeros , Sistemas de Liberação de Medicamentos , MicelasRESUMO
Due to its intrinsic electrical conductivity, polyaniline (PANI) is one of the most promising conducting polymers for high-performance applications in a wide range of technological fields. However, its poor dispersibility in water and organic solvents markedly imparts its processability and electrical conductivity. Herein, we report a green and one-step approach to preparing stable colloidal dispersions of highly dispersible hybrid nanoparticles by polymerizing PANI onto chitin nanocrystals (ChNCs) as biotemplates, via initiation through the surface amino groups of ChNCs. Evidence of the grafting of PANI onto ChNCs was supported by transmission electron microscopy (TEM), as well as Raman and Fourier transform infrared (FTIR) spectroscopies. Nanocomposite films were prepared by mixing the PANI-g-ChNCs with a waterborne poly(vinyl acetate) latex dispersion followed by casting and film formation at room temperature. The mechanical properties were tested as a function of the PANI-g-ChNC content. In addition, it was shown that at a proper content of PANI in ChNCs, and over a critical loading in the PANI-g-ChNCs, a conductive film was obtained, without sacrificing the reinforcing effect of the rodlike nanofiller. As a potential application, conductive waterborne adhesives for wood were prepared and the performance of the adhesives was tested. This research provides a facile route to fabricating a new class of hybrid nanofiller from a biobased origin, stable in water and easy to mix with waterborne dispersions, combining the merits of the ChNC nanofiller with the conductivity of PANI.
Assuntos
Nanopartículas , Polímeros , Compostos de Anilina , Quitina/química , Condutividade Elétrica , Látex , Nanopartículas/química , Polímeros/química , Solventes , ÁguaRESUMO
Colloidal nanoparticles were prepared by aqueous self-assembly of amphiphilic ß-cyclodextrins (ßCDs) acylated on their secondary face with C14 chains to a total degree of substitution of 7.0, via a thermolysin-catalyzed transesterification process. The small-angle X-ray scattering pattern of the nanoparticles was consistent with a reverse hexagonal organization. Cryo-transmission electron microscopy images revealed particles with spectacular tortuous shapes and consisting of misoriented domains with a regular columnar hexagonal structure, separated by sharp interfaces. Edge dislocations as well as a variety of stepped tilt grain boundaries (GBs) composed of symmetrical and asymmetrical sections, together with one twist GB, were identified from axial views of the columnar organization. The tilt GB structure was analyzed using the concepts of coincidence site lattice and structural units developed to describe the atomic structure of interfaces in various types of polycrystals. The tilt GBs were described using sequences of ßCD-C14 columns that differed by the number of neighboring columns (5, 6 or 7) and exhibiting distinctive contrasts. To our knowledge, this is the first time that these types of topological defects are described at the nanometric scale by direct observation of colloidal polycrystalline hexosomes of self-organized amphiphiles.
RESUMO
Ordered molecular self-assembly of glycoamphiphiles has been regarded as an attractive, practical and bottom-up approach to obtain stable, structurally well-defined, and functional mimics of natural polysaccharides. This study describes a versatile and rational design of carbohydrate-based hydrogelators through N,N'-substituted barbituric acid-mediated Knoevenagel condensation onto unprotected carbohydrates in water. Amphiphilic N-substituted ß-C-maltosylbarbiturates self-assembled into pH- and calcium-triggered alginate-like supramolecular hydrogel fibers with a multistimuli responsiveness to temperature, pH and competitive metal chelating agent. In addition, amphiphilic N,N'-disubstituted ß-C-maltosylbarbiturates formed vesicle gels in pure water that were scarcely observed for glyco-hydrogelators. Finally, barbituric acid worked as a multitasking group allowing chemoselective ligation onto reducing-end carbohydrates, structural diversity, stimuli-sensitiveness, and supramolecular interactions by hydrogen bonding.
Assuntos
Alginatos , Hidrogéis , Ligação de Hidrogênio , Temperatura , ÁguaRESUMO
Stable biobased waterborne Pickering dispersions of acrylated epoxidized soybean oil (AESO) were developed using chitin nanocrystals (ChNCs) as sole emulsifier without any additives. Thin AESO-ChNC nanocomposite films were produced by UV-curing thin-coated layers of the AESO emulsion after water evaporation. The kinetics of photopolymerization were assessed by monitoring the consumption of the AESO acrylate groups by infrared spectroscopy (Fourier transform infrared (FTIR)). The curing was faster in the presence of ChNCs, with a disappearance of the induction period observed for neat AESO. The coating of AESO droplets with a thin layer of ChNCs was confirmed by scanning electron microscopy (SEM) observation. SEM and transmission electron microscopy (TEM) images revealed the honeycomb organization of ChNCs inside the cured AESO-ChNC films. The mechanical, thermal, and optical properties of the nanocomposite films were studied by dynamic mechanical analysis (DMA), tensile testing, differential scanning calorimetry (DSC), and transmittance measurement, as a function of ChNC content. The inclusion of ChNCs is strongly beneficial to increase the stiffness and strength of the cured films, without compromising its optical transparency. The ability of ChNCs to act as an emulsifier for AESO in replacement of synthetic surfactants and their strong reinforcing effect in UV-cured films offer new opportunities to produce waterborne stable dispersions from AESO for application in biobased coatings and adhesives.
Assuntos
Nanocompostos , Nanopartículas , Quitina , Óleo de SojaRESUMO
The initiation of starch granule formation is still poorly understood. However, the soluble starch synthase 4 (SS4) appears to be a major component of this process since it is required to synthesize the correct number of starch granules in the chloroplasts of Arabidopsis thaliana plants. A yeast two-hybrid screen allowed the identification of several putative SS4 interacting partners. We identified the product of At4g32190 locus as a chloroplast-targeted PROTEIN INVOLVED IN STARCH INITIATION (named PII1). Arabidopsis mutants devoid of PII1 display an alteration of the starch initiation process and accumulate, on average, one starch granule per plastid instead of the five to seven granules found in plastids of wild-type plants. These granules are larger than in wild-type, and they remain flat and lenticular. pii1 mutants display wild-type growth rates and accumulate standard starch amounts. Moreover, starch characteristics, such as amylopectin chain length distribution, remain unchanged. Our results reveal the involvement of PII1 in the starch priming process in Arabidopsis leaves through interaction with SS4.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Amido/metabolismo , Amilopectina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Microscopia Eletrônica de Varredura , Mutação , Cadeias Pesadas de Miosina/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plastídeos/genética , Plastídeos/metabolismo , Amido/genética , Amido/ultraestrutura , Sintase do Amido/genética , Sintase do Amido/metabolismoRESUMO
In vitro polymerization of ß-mannans is a challenging reaction due to the steric hindrance confered by the configuration of mannosyl residues and the thermodynamic instability of the ß-anomer. Whatever the approach used to date-whether chemical, or enzymatic with glycosynthases and mannosyltransferases-pure ß-1,4-mannans have never been synthesized in vitro. This has limited attempts to investigate their role in the production of plant and algal cell walls, in which they are highly abundant. It has also impeded the exploitation of their properties as biosourced materials. In this paper, we demonstrate that TM1225, a thermoactive glycoside phosphorylase from the hyperthermophile species Thermotoga maritima, is a powerful biocatalytic tool for the ecofriendly synthesis of pure ß-1,4-mannan. The recombinant production of this enzyme and its biochemical characterization allowed us to prove that it catalyzes the reversible phosphorolysis of ß-1,4-mannosides, and determine its role in the metabolism of the algal mannans on which T. maritima feeds in submarine sediments. Furthermore, after optimizing the reaction conditions, we exploited the synthetic ability of TM1225 to produce ß-1,4-mannan in vitro. At 60 °C and from d-mannose 1-phosphate and mannohexaose, the enzyme synthesized mannoside chains with a degree of polymerization up to 16, which precipitated into lamellar single crystals. The X-ray powder diffraction and base-plane electron diffraction patterns of the lamellar crystals unambiguously show that the synthesized product belongs to the mannan I family previously observed in planta in pure linear mannans, such as those of the ivory nut. The in vitro formation of these mannan I crystals is likely determined by the high reaction temperature and the narrow chain length distribution of the insoluble chains.
Assuntos
Biocatálise , Mananas/síntese química , Proteínas de Bactérias/metabolismo , Cristalização , Fosforilases/metabolismo , Polimerização , Thermotoga maritima/enzimologiaRESUMO
The inline coupling of the field-amplified sample injection (FASI) to Taylor dispersion analysis (TDA) was used to characterize low-UV absorbing carboxylated silica nanoparticles (cNPs). The hydrodynamic diameters (Dh) were measured by using a commercial capillary electrophoresis instrument. The proposed methodology did not require any complicated instruments or chromophoric dye to increase the detection sensitivity. A practical method based on a half-Gaussian fitting was proposed for the data processing. The results obtained by this method were compared with those derived from dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses. From these results, it appeared that the size derived by TDA is in excellent agreement with those measured by DLS and TEM, as demonstrated by stable nanoparticles with narrow size distributions. Intermediate precision relative standard deviations less than 5% were obtained by FASI-TDA. The effect of the FASI-induced cNP peak dispersion on the reliability of the results was discussed in detail.
RESUMO
The periodate oxidation of microfibrillated cellulose followed by a reduction treatment was implemented to produce a new type of sterically stabilized cellulosic nanocrystals, which were characterized at the molecular and colloidal length scales. Solid-state NMR data showed that these treatments led to objects consisting of native cellulose and flexible polyols resulting from the oxidation and subsequent reduction of cellulose. A consistent set of data from dynamic light scattering, turbidimetry, transmission electron microscopy, and small-angle X-ray scattering experiments further showed that stable neutral elongated nanoparticles composed of a crystalline cellulosic core surrounded by a shell of dangling polyol chains were produced. The dimensions of these biosourced nanocrystals could be controlled by the degree of oxidation of the parent dialdehyde cellulose sample. The purely steric origin of the colloidal stability of these nanoparticles is a strong asset for their use under conditions where electrostatics no longer provides colloidal stability.
RESUMO
Rubber materials with well-dispersed fillers and large mechanical reinforcement have been obtained by melt-processing a diene elastomer matrix and tailored nanocellulose powders having both a high specific surface area and a modified interface. Such filler powders with a specific surface area of 180 m2 g-1 and 100 m2 g-1 have been obtained by freeze-drying suspensions of short needle-like cellulose nanocrystals (CNCs) and entangled networks of microfibrillated cellulose (MFC) in tert-butanol/water, respectively. A quantitative and toposelective filler surface esterification was performed using a gas-phase protocol either with palmitoyl chloride (PCl) to obtain a hydrophobic but non-reactive nanocellulose interface, or with 3,3'-dithiopropionic acid chloride (DTACl) to introduce reactive groups that can covalently bind the nanocellulose interface to the dienic matrix in a subsequent vulcanization process. A set of filled materials was prepared varying the filler morphology, interface and volume fraction. Transmission electron microscopy images of ultrathin cryo-sections showed that modified nanocellulose fillers presented a relatively homogeneous distribution up to a volume fraction of 20%. The materials also exhibited a significant modulus increase, while keeping an extensibility in the same range as that of the neat matrix. Strikingly, in the case of the reactive interface, a strong stress-stiffening behavior was evidenced from the upward curvature of the tensile curve, leading to a large increase of the ultimate stress (up to 7 times that of the neat matrix). Taken together, these properties, which have never been previously reported for nanocellulose-filled elastomers, match well the mechanical characteristics of industrial carbon black or silica-loaded elastomers.
RESUMO
At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network.
Assuntos
Proteínas de Bactérias/metabolismo , Evolução Biológica , Cianobactérias/metabolismo , Glicogênio/metabolismo , Sintase do Amido/metabolismo , Proteínas de Bactérias/genética , Cianobactérias/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Glicogênio/química , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Mutação , Filogenia , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo , Amido/metabolismo , Sintase do Amido/genética , Synechocystis/genética , Synechocystis/metabolismoRESUMO
A series of ß-cyclodextrin (ßCD) amphiphilic derivatives with varying degrees of substitution were prepared by acylating ßCDs on their secondary face using thermolysin to catalyze the transesterification. After dissolution in acetone, the ßCD-Cn derivatives (n = 8, 10, 12, 14) were nanoprecipitated in water, where they self-organized into structured particles that were characterized using cryo-transmission electron microscopy (cryo-TEM) images and small-angle X-ray scattering (SAXS) data. Two types of morphologies and ultrastructures were observed depending on the total degree of substitution (TDS) of the parent derivative. The molecules with TDS < 5 formed nanospheres with a multilamellar organization, whereas those with TDS > 5 self-assembled into barrel-like (n = 8, 10, 12) or more tortuous (n = 14) particles with a columnar inverse hexagonal structure. In particular, faceted ßCD-C14 particles (TDS = 7) appeared to be composed of several domains with different orientations that were separated by sharp interfaces. Ultrastructural models were proposed on the basis of cryo-TEM images and the analysis of the contrast distribution in different projections of the lattice. Complementary compression isotherm experiments carried out at the air-water interface also suggested that differences in the molecular conformation of the series of derivatives existed depending on whether TDS was lower or higher than 5.
RESUMO
The interaction of 1,2 dioleolyl-sn-glycero-3-phosphatidylcholine (DOPC) vesicles with cellulose nanocrystals (CNCs) using several complementary techniques. Dynamic light scattering, zeta-potential, cryo-transmission electron microscopy and isothermal titration calorimetry (ITC) analyses confirmed the formation of pH-dependent CNC-liposome complexes. ITC was used to characterize the thermodynamic properties of this interaction. Positive values of enthalpy were found at pH lower than 5 where the charge sign of the constituents was opposite. The association was more pronounced at lower pH, as indicated by the higher values of association constant. We suggest that the positive enthalpy is derived from the release of counterions from the particle hydration shell during the association and that the charge of the vesicles plays a significant role in this interaction.
Assuntos
Celulose/química , Lipossomos/química , Nanopartículas/química , Fosfatidilcolinas/química , Concentração de Íons de HidrogênioRESUMO
Starch synthesis requires several enzymatic activities including branching enzymes (BEs) responsible for the formation of α(1 â 6) linkages. Distribution and number of these linkages are further controlled by debranching enzymes that cleave some of them, rendering the polyglucan water-insoluble and semi-crystalline. Although the activity of BEs and debranching enzymes is mandatory to sustain normal starch synthesis, the relative importance of each in the establishment of the plant storage polyglucan (i.e. water insolubility, crystallinity and presence of amylose) is still debated. Here, we have substituted the activity of BEs in Arabidopsis with that of the Escherichia coli glycogen BE (GlgB). The latter is the BE counterpart in the metabolism of glycogen, a highly branched water-soluble and amorphous storage polyglucan. GlgB was expressed in the be2 be3 double mutant of Arabidopsis, which is devoid of BE activity and consequently free of starch. The synthesis of a water-insoluble, partly crystalline, amylose-containing starch-like polyglucan was restored in GlgB-expressing plants, suggesting that BEs' origin only has a limited impact on establishing essential characteristics of starch. Moreover, the balance between branching and debranching is crucial for the synthesis of starch, as an excess of branching activity results in the formation of highly branched, water-soluble, poorly crystalline polyglucan.
Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Arabidopsis/metabolismo , Glucanos/biossíntese , Plantas Geneticamente Modificadas/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Arabidopsis/genética , Metabolismo dos Carboidratos , Cloroplastos/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Glucanos/ultraestrutura , Plantas Geneticamente Modificadas/genéticaRESUMO
Starch, unlike hydrosoluble glycogen particles, aggregates into insoluble, semicrystalline granules. In photosynthetic eukaryotes, the transition to starch accumulation occurred after plastid endosymbiosis from a preexisting cytosolic host glycogen metabolism network. This involved the recruitment of a debranching enzyme of chlamydial pathogen origin. The latter is thought to be responsible for removing misplaced branches that would otherwise yield a water-soluble polysaccharide. We now report the implication of starch debranching enzyme in the aggregation of semicrystalline granules of single-cell cyanobacteria that accumulate both glycogen and starch-like polymers. We show that an enzyme of analogous nature to the plant debranching enzyme but of a different bacterial origin was recruited for the same purpose in these organisms. Remarkably, both the plant and cyanobacterial enzymes have evolved through convergent evolution, showing novel yet identical substrate specificities from a preexisting enzyme that originally displayed the much narrower substrate preferences required for glycogen catabolism.
Assuntos
Evolução Biológica , Cianobactérias/enzimologia , Sistema da Enzima Desramificadora do Glicogênio/genética , Glicogênio/metabolismo , Oryza/enzimologia , Amido/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Cianobactérias/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Mutagênese , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
The colloidal stability together with the tunable aggregation and viscoelastic properties of thermoresponsive polymer-grafted cellulose nanocrystals (CNCs) were investigated. TEMPO oxidation of CNCs followed by peptidic coupling in water were used to covalently graft thermosensitive Jeffamine polyetheramine M2005 chains onto the surface of CNCs. The resulting polymer-decorated particles (M2005-g-CNCs) exhibited new colloidal properties, by their ability to perfectly redisperse in water and organic solvents such as toluene, dichloromethane or DMF after freeze-drying. In addition, they presented an enhanced thermal stability when compared to that of sulfated or TEMPO-oxidized CNCs. Dynamic light scattering experiments were used to demonstrate that the thermally induced aggregation of M2005-g-CNCs was fully reversible and reproducible over many temperature cycles and that, most interestingly, the aggregation number could be tuned by varying the ionic strength and/or the pH of the medium, making the suspension multiresponsive. This property arises from the variations of the sign (attractive or repulsive) and the range of the different types (entropic, electrostatic, hydrophobic) of interaction forces between the thermosensitive polymer-decorated nanoparticles. The variation of the viscoelastic properties of M2005-g-CNCs suspensions as a function of temperature, probed by oscillatory rheology measurements of more concentrated suspensions, revealed a reversible temperature-triggered liquid-to-gel transition. Such enhanced functionalities pave the way to the design of advanced CNC-based materials benefiting both from the intrinsic characteristics of these biosourced particles and the new properties imparted by the stimuli-sensitive grafted chains.