Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angiogenesis ; 26(4): 505-522, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37120604

RESUMO

Intraplaque (IP) angiogenesis is a key feature of advanced atherosclerotic plaques. Because IP vessels are fragile and leaky, erythrocytes are released and phagocytosed by macrophages (erythrophagocytosis), which leads to high intracellular iron content, lipid peroxidation and cell death. In vitro experiments showed that erythrophagocytosis by macrophages induced non-canonical ferroptosis, an emerging type of regulated necrosis that may contribute to plaque destabilization. Erythrophagocytosis-induced ferroptosis was accompanied by increased expression of heme-oxygenase 1 and ferritin, and could be blocked by co-treatment with third generation ferroptosis inhibitor UAMC-3203. Both heme-oxygenase 1 and ferritin were also expressed in erythrocyte-rich regions of carotid plaques from ApoE-/- Fbn1C1039G+/- mice, a model of advanced atherosclerosis with IP angiogenesis. The effect of UAMC-3203 (12.35 mg/kg/day) on atherosclerosis was evaluated in ApoE-/- Fbn1C1039G+/- mice fed a western-type diet (WD) for 12 weeks (n = 13 mice/group) or 20 weeks (n = 16-21 mice/group) to distinguish between plaques without and with established IP angiogenesis, respectively. A significant decrease in carotid plaque thickness was observed after 20 weeks WD (87 ± 19 µm vs. 166 ± 20 µm, p = 0.006), particularly in plaques with confirmed IP angiogenesis or hemorrhage (108 ± 35 µm vs. 322 ± 40 µm, p = 0.004). This effect was accompanied by decreased IP heme-oxygenase 1 and ferritin expression. UAMC-3203 did not affect carotid plaques after 12 weeks WD or plaques in the aorta, which typically do not develop IP angiogenesis. Altogether, erythrophagocytosis-induced ferroptosis during IP angiogenesis leads to larger atherosclerotic plaques, an effect that can be prevented by ferroptosis inhibitor UAMC-3203.


Assuntos
Aterosclerose , Ferroptose , Placa Aterosclerótica , Camundongos , Animais , Fibrilina-1/metabolismo , Apolipoproteínas E/genética , Ferritinas , Oxigenases/metabolismo , Heme/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 42(11): 1283-1306, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36134566

RESUMO

During atherosclerosis, lipid-rich plaques are formed in large- and medium-sized arteries, which can reduce blood flow to tissues. This situation becomes particularly precarious when a plaque develops an unstable phenotype and becomes prone to rupture. Despite advances in identifying and treating vulnerable plaques, the mortality rate and disability caused by such lesions remains the number one health threat in developed countries. Vulnerable, unstable plaques are characterized by a large necrotic core, implying a prominent role for necrotic cell death in atherosclerosis and plaque destabilization. Necrosis can occur accidentally or can be induced by tightly regulated pathways. Over the past decades, different forms of regulated necrosis, including necroptosis, ferroptosis, pyroptosis, and secondary necrosis, have been identified, and these may play an important role during atherogenesis. In this review, we describe several forms of necrosis that may occur in atherosclerosis and how pharmacological modulation of these pathways can stabilize vulnerable plaques. Moreover, some challenges of targeting necrosis in atherosclerosis such as the presence of multiple death-inducing stimuli in plaques and extensive cross-talk between necrosis pathways are discussed. A better understanding of the role of (regulated) necrosis in atherosclerosis and the mechanisms contributing to plaque destabilization may open doors to novel pharmacological strategies and will enable clinicians to tackle the residual cardiovascular risk that remains in many atherosclerosis patients.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Aterosclerose/patologia , Necrose , Placa Aterosclerótica/patologia , Apoptose , Lipídeos
3.
Nat Rev Cardiol ; 21(5): 312-325, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38163815

RESUMO

Atherosclerosis is a progressive inflammatory disorder of the arterial vessel wall characterized by substantial infiltration of macrophages, which exert both favourable and detrimental functions. Early in atherogenesis, macrophages can clear cytotoxic lipoproteins and dead cells, preventing cytotoxicity. Efferocytosis - the efficient clearance of dead cells by macrophages - is crucial for preventing secondary necrosis and stimulating the release of anti-inflammatory cytokines. In addition, macrophages can promote tissue repair and proliferation of vascular smooth muscle cells, thereby increasing plaque stability. However, advanced atherosclerotic plaques contain large numbers of pro-inflammatory macrophages that secrete matrix-degrading enzymes, induce death in surrounding cells and contribute to plaque destabilization and rupture. Importantly, macrophages in the plaque can undergo apoptosis and several forms of regulated necrosis, including necroptosis, pyroptosis and ferroptosis. Regulated necrosis has an important role in the formation and expansion of the necrotic core during plaque progression, and several triggers for necrosis are present within atherosclerotic plaques. This Review focuses on the various forms of programmed macrophage death in atherosclerosis and the pharmacological interventions that target them as a potential means of stabilizing vulnerable plaques and improving the efficacy of currently available anti-atherosclerotic therapies.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Aterosclerose/tratamento farmacológico , Macrófagos/fisiologia , Apoptose , Necrose
4.
Biomedicines ; 10(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35625908

RESUMO

Gasdermin D (GSDMD) is the key executor of pyroptotic cell death. Recent studies suggest that GSDMD-mediated pyroptosis is involved in atherosclerotic plaque destabilization. We report that cleaved GSDMD is expressed in macrophage- and smooth muscle cell-rich areas of human plaques. To determine the effects of GSDMD deficiency on atherogenesis, ApoE-/- Gsdmd-/- (n = 16) and ApoE-/-Gsdmd+/+ (n = 18) mice were fed a western-type diet for 16 weeks. Plaque initiation and formation of stable proximal aortic plaques were not altered. However, plaques in the brachiocephalic artery (representing more advanced lesions compared to aortic plaques) of ApoE-/- Gsdmd-/- mice were significantly smaller (115 ± 18 vs. 186 ± 16 × 103 µm2, p = 0.006) and showed features of increased stability, such as decreased necrotic core area (19 ± 4 vs. 37 ± 7 × 103 µm2, p = 0.03) and increased αSMA/MAC3 ratio (1.6 ± 0.3 vs. 0.7 ± 0.1, p = 0.01), which was also observed in proximal aortic plaques. Interestingly, a significant increase in TUNEL positive cells was observed in brachiocephalic artery plaques from ApoE-/- Gsdmd-/- mice (141 ± 25 vs. 62 ± 8 cells/mm2, p = 0.005), indicating a switch to apoptosis. This switch from pyroptosis to apoptosis was also observed in vitro in Gsdmd-/- macrophages. In conclusion, targeting GSDMD appears to be a promising approach for limiting the transition to an inflammatory, vulnerable plaque phenotype.

5.
Biomedicines ; 10(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35625752

RESUMO

RIPK1 (receptor-interacting serine/threonine-protein kinase 1) enzymatic activity drives both apoptosis and necroptosis, a regulated form of necrosis. Because necroptosis is involved in necrotic core development in atherosclerotic plaques, we investigated the effects of a RIPK1S25D/S25D mutation, which prevents activation of RIPK1 kinase, on atherogenesis in ApoE-/- mice. After 16 weeks of western-type diet (WD), atherosclerotic plaques from ApoE-/- RIPK1S25D/S25D mice were significantly larger compared to ApoE-/- RIPK1+/+ mice (167 ± 34 vs. 78 ± 18 × 103 µm2, p = 0.01). Cell numbers (350 ± 34 vs. 154 ± 33 nuclei) and deposition of glycosaminoglycans (Alcian blue: 31 ± 6 vs. 14 ± 4%, p = 0.023) were increased in plaques from ApoE-/- RIPK1S25D/S25D mice while macrophage content (Mac3: 2.3 ± 0.4 vs. 9.8 ± 2.4%, p = 0.012) was decreased. Plaque apoptosis was not different between both groups. In contrast, pharmacological inhibition of RIPK1 kinase with GSK'547 (10 mg/kg BW/day) in ApoE-/- Fbn1C1039G+/- mice, a model of advanced atherosclerosis, did not alter plaque size after 20 weeks WD, but induced apoptosis (TUNEL: 136 ± 20 vs. 62 ± 9 cells/mm2, p = 0.004). In conclusion, inhibition of RIPK1 kinase activity accelerated plaque progression in ApoE-/- RIPK1S25D/S25D mice and induced apoptosis in GSK'547-treated ApoE-/- Fbn1C1039G+/- mice. Thus, without directly comparing the genetic and pharmacological studies, it can be concluded that targeting RIPK1 kinase activity does not limit atherogenesis.

6.
Front Physiol ; 12: 741346, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744784

RESUMO

Measuring arterial stiffness has recently gained a lot of interest because it is a strong predictor for cardiovascular events and all-cause mortality. However, assessing blood vessel stiffness is not easy and the in vivo measurements currently used provide only limited information. Ex vivo experiments allow for a more thorough investigation of (altered) arterial biomechanical properties. Such experiments can be performed either statically or dynamically, where the latter better corresponds to physiological conditions. In a dynamic setup, arterial segments oscillate between two predefined forces, mimicking the diastolic and systolic pressures from an in vivo setting. Consequently, these oscillations result in a pulsatile load (i.e., the pulse pressure). The importance of pulse pressure on the ex vivo measurement of arterial stiffness is not completely understood. Here, we demonstrate that pulsatile load modulates the overall stiffness of the aortic tissue in an ex vivo setup. More specifically, increasing pulsatile load softens the aortic tissue. Moreover, vascular smooth muscle cell (VSMC) function was affected by pulse pressure. VSMC contraction and basal tonus showed a dependence on the amplitude of the applied pulse pressure. In addition, two distinct regions of the aorta, namely the thoracic descending aorta (TDA) and the abdominal infrarenal aorta (AIA), responded differently to changes in pulse pressure. Our data indicate that pulse pressure alters ex vivo measurements of arterial stiffness and should be considered as an important variable in future experiments. More research should be conducted in order to determine which biomechanical properties are affected due to changes in pulse pressure. The elucidation of the underlying pulse pressure-sensitive properties would improve our understanding of blood vessel biomechanics and could potentially yield new therapeutic insights.

7.
Atherosclerosis ; 322: 51-60, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33706083

RESUMO

BACKGROUND AND AIMS: Targeting macrophage death is a promising strategy for stabilizing atherosclerotic plaques. Recently, necroptosis was identified as a form of regulated necrosis in atherosclerosis. Receptor-interacting serine/threonine-protein kinase (RIPK)1 is an upstream regulator of RIPK3, which is a crucial kinase for necroptosis induction. We aimed to investigate the impact of myeloid-specific RIPK1 gene deletion on atherogenesis. METHODS: RIPK1F/FLysM-Cre+ApoE-/- and RIPK1+/+LysM-Cre+ApoE-/- mice were fed a western-type diet (WD) for 16 or 24 weeks to induce plaque formation. RESULTS: After 16 weeks WD, plaque area and percentage necrosis in RIPK1F/FLysM-Cre+ApoE-/- mice were significantly decreased as compared to plaques of RIPK1+/+LysM-Cre+ApoE-/- mice. Moreover, plaques of RIPK1F/FLysM-Cre+ApoE-/- mice showed more apoptosis and a decreased macrophage content. After 24 weeks WD, plaque size and percentage necrosis were no longer different between the two groups. Free apoptotic cells strongly accumulated in plaques of RIPK1F/FLysM-Cre+ApoE-/- mice. In addition to apoptosis, necroptosis was upregulated in plaques of RIPK1F/FLysM-Cre+ApoE-/- mice. In vitro, TNF-α triggered apoptosis in RIPK1F/FLysM-Cre+ApoE-/-, but not in RIPK1+/+LysM-Cre+ApoE-/- macrophages. Moreover, RIPK1F/FLysM-Cre+ApoE-/- macrophages were not protected against RIPK3-dependent necroptosis. CONCLUSIONS: The impact of myeloid RIPK1 gene deletion depends on the stage of atherogenesis. At 16 weeks WD, myeloid RIPK1 gene deletion resulted in increased apoptosis, thereby slowing down plaque progression. However, despite decreased macrophage content, plaque and necrotic core size were no longer reduced after 24 weeks of WD, most likely due to the accumulation of free apoptotic and necroptotic cells.


Assuntos
Aterosclerose , Deleção de Genes , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Apoptose , Aterosclerose/genética , Camundongos , Camundongos Knockout para ApoE , Necrose , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
8.
J Clin Med ; 9(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992732

RESUMO

Acute myeloid leukemia (AML) is a hematologic malignancy characterized by the rapid and uncontrolled clonal growth of myeloid lineage cells in the bone marrow. The advent of oral, selective inhibitors of the B-cell leukemia/lymphoma-2 (BCL-2) apoptosis pathway, such as venetoclax, will likely induce a paradigm shift in the treatment of AML. However, the high cost of this treatment and the risk of additive toxicity when used in combination with standard chemotherapy represent limitations to its use and underscore the need to identify which patients are most-and least-likely to benefit from incorporation of venetoclax into the treatment regimen. Bone marrow specimens from 93 newly diagnosed AML patients were collected in this study and evaluated for BCL-2 protein expression by immunohistochemistry. Using this low-cost, easily, and readily applicable analysis method, we found that 1 in 5 AML patients can be considered as BCL-2-. In addition to a lower bone marrow blast percentage, this group exhibited a favorable molecular profile characterized by lower WT1 expression and underrepresentation of FLT3 mutations. As compared to their BCL-2+ counterparts, the absence of BCL-2 expression was associated with a favorable response to standard chemotherapy and overall survival, thus potentially precluding the necessity for venetoclax add-on.

9.
Front Pharmacol ; 10: 306, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019462

RESUMO

Atherosclerosis is a chronic inflammatory disorder characterized by the gradual build-up of plaques within the vessel wall of middle-sized and large arteries. Over the past decades, treatment of atherosclerosis mainly focused on lowering lipid levels, which can be accomplished by the use of statins. However, some patients do not respond sufficiently to statin therapy and therefore still have a residual cardiovascular risk. This issue highlights the need for novel therapeutic strategies. As macrophages are implicated in all stages of atherosclerotic lesion development, they represent an important alternative drug target. A variety of anti-inflammatory strategies have recently emerged to treat or prevent atherosclerosis. Here, we review the canonical mechanisms of macrophage death and their impact on atherogenesis and plaque stability. Macrophage death is a prominent feature of advanced plaques and is a major contributor to necrotic core formation and plaque destabilization. Mechanisms of macrophage death in atherosclerosis include apoptosis, passive or accidental necrosis as well as secondary necrosis, a type of death that typically occurs when apoptotic cells are insufficiently cleared by neighboring cells via a phagocytic process termed efferocytosis. In addition, less-well characterized types of regulated necrosis in macrophages such as necroptosis, pyroptosis, ferroptosis, and parthanatos may occur in advanced plaques and are also discussed. Autophagy in plaque macrophages is an important survival pathway that protects against cell death, yet massive stimulation of autophagy promotes another type of death, usually referred to as autosis. Multiple lines of evidence indicate that a better insight into the different mechanisms of macrophage death, and how they mutually interact, will provide novel pharmacological strategies to resolve atherosclerosis and stabilize vulnerable, rupture-prone plaques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA