Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant Cell Physiol ; 65(5): 809-822, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38564325

RESUMO

Drought is the most severe form of stress experienced by plants worldwide. Cucumber is a vegetable crop that requires a large amount of water throughout the growth period. In our previous study, we identified that overexpression of CsHSFA1d could improve cold tolerance and the content of endogenous jasmonic acid in cucumber seedlings. To explore the functional diversities of CsHSFA1d, we treat the transgenic plants under drought conditions. In this study, we found that the heat shock transcription factor HSFA1d (CsHSFA1d) could improve drought stress tolerance in cucumber. CsHSFA1d overexpression increased the expression levels of galactinol synthase (CsGolS3) and raffinose synthase (CsRS) genes, encoding the key enzymes for raffinose family oligosaccharide (RFO) biosynthesis. Furthermore, the lines overexpressing CsHSFA1d showed higher enzymatic activity of GolS and raffinose synthase to increase the content of RFO. Moreover, the CsHSFA1d-overexpression lines showed lower reactive oxygen species (ROS) accumulation and higher ROS-scavenging enzyme activity after drought treatment. The expressions of antioxidant genes CsPOD2, CsAPX1 and CsSOD1 were also upregulated in CsHSFA1d-overexpression lines. The expression levels of stress-responsive genes such as CsRD29A, CsLEA3 and CsP5CS1 were increased in CsHSFA1d-overexpression lines after drought treatment. We conclude that CsHSFA1d directly targets and regulates the expression of CsGolS3 and CsRS to promote the enzymatic activity and accumulation of RFO to increase the tolerance to drought stress. CsHSFA1d also improves ROS-scavenging enzyme activity and gene expression indirectly to reduce drought-induced ROS overaccumulation. This study therefore offers a new gene target to improve drought stress tolerance in cucumber and revealed the underlying mechanism by which CsHSFA1d functions in the drought stress by increasing the content of RFOs and scavenging the excessive accumulation of ROS.


Assuntos
Cucumis sativus , Galactosiltransferases , Regulação da Expressão Gênica de Plantas , Oligossacarídeos , Proteínas de Plantas , Plantas Geneticamente Modificadas , Rafinose , Espécies Reativas de Oxigênio , Cucumis sativus/genética , Cucumis sativus/fisiologia , Cucumis sativus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rafinose/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Oligossacarídeos/metabolismo , Galactosiltransferases/metabolismo , Galactosiltransferases/genética , Secas , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Estresse Fisiológico/genética
2.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256002

RESUMO

The domains of unknown function (DUF) superfamilies contain proteins with conserved amino acid sequences without known functions. Among them, DUF668 was indicated widely involving the stress response of plants. However, understanding ZoDUF668 is still lacking. Here, 12 ZoDUF668 genes were identified in ginger by the bioinformatics method and unevenly distributed on six chromosomes. Conserved domain analysis showed that members of the same subfamily had similar conserved motifs and gene structures. The promoter region of ZoDUF668s contained the light, plant hormone and stress-responsive elements. The prediction of miRNA targeting relationship showed that nine ginger miRNAs targeted four ZoDUF668 genes through cleavage. The expression patterns of 12 ZoDUF668 genes under biotic and abiotic stress were analyzed using RT-qPCR. The results showed that the expression of seven ZoDUF668 genes was significantly downregulated under Fusarium solani infection, six ZoDUF668 genes were upregulated under cold stress, and five ZoDUF668 genes were upregulated under waterlogging stress. These results indicate that the ZoDUF668 gene has different expression patterns under different stress conditions. This study provides excellent candidate genes and provides a reference for stress-resistance research in ginger.


Assuntos
Fusariose , MicroRNAs , Zingiber officinale , Zingiber officinale/genética , Sequência de Aminoácidos , Resposta ao Choque Frio/genética , Biologia Computacional , MicroRNAs/genética
3.
Plant J ; 111(1): 85-102, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35436390

RESUMO

Cucumber (Cucumis sativus) originated in tropical areas and is very sensitive to low temperatures. Cold acclimation is a universal strategy that improves plant resistance to cold stress. In this study, we report that heat shock induces cold acclimation in cucumber seedlings, via a process involving the heat-shock transcription factor HSFA1d. CsHSFA1d expression was improved by both heat shock and cold treatment. Moreover, CsHSFA1d transcripts accumulated more under cold treatment after a heat-shock pre-treatment than with either heat shock or cold treatment alone. After exposure to cold, cucumber lines overexpressing CsHSFA1d displayed stronger tolerance for cold stress than the wild type, whereas CsHSFA1d knockdown lines obtained by RNA interference were more sensitive to cold stress. Furthermore, both the overexpression of CsHSFA1d and heat-shock pre-treatment increased the endogenous jasmonic acid (JA) content in cucumber seedlings after cold treatment. Exogenous application of JA rescued the cold-sensitive phenotype of CsHSFA1d knockdown lines, underscoring that JA biosynthesis is key for CsHSFA1d-mediated cold tolerance. Higher JA content is likely to lead to the degradation of CsJAZ5, a repressor protein of the JA pathway. We also established that CsJAZ5 interacts with CsICE1. JA-induced degradation of CsJAZ5 would be expected to release CsICE1, which would then activate the ICE-CBF-COR pathway. After cold treatment, the relative expression levels of ICE-CBF-COR signaling pathway genes, such as CsICE1, CsCBF1, CsCBF2 and CsCOR1, in CsHSFA1d overexpression lines were significantly higher than in the wild type and knockdown lines. Taken together, our results help to reveal the mechanism underlying heat shock-induced cold acclimation in cucumber.


Assuntos
Cucumis sativus , Aclimatação/genética , Temperatura Baixa , Cucumis sativus/genética , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Plântula/genética , Transdução de Sinais
4.
Plant Cell Physiol ; 60(3): 562-574, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30496548

RESUMO

Melatonin plays an important role in stress tolerance in plants. In this study, exogenous melatonin significantly alleviated the dwarf phenotype and inhibited the decrease of plant fresh weight induced by excess copper (Cu2+). Our results indicated that melatonin alleviated Cu2+ toxicity by improving Cu2+ sequestration, carbon metabolism and ROS (reactive oxygen species) scavenging, rather than by influencing the Cu2+ uptake under excess Cu2+ conditions. Transcriptome analysis showed that melatonin broadly altered gene expression under Cu2+ stress. Melatonin increased the levels of glutathione and phytochelatin to chelate excess Cu2+ and promoted cell wall trapping, thus keeping more Cu2+ in the cell wall and vacuole. Melatonin inhibited ROS production and enhanced antioxidant systems at the transcriptional level and enzyme activities, thus building a line of defense in response to excess Cu2+. The distribution of nutrient elements was recovered by melatonin which was disturbed by Cu2+. In addition, melatonin activated carbon metabolism, especially glycolysis and the pentose phosphate pathway, to generate more ATP, an intermediate for biosynthesis. Taken together, melatonin alleviated Cu2+ toxicity in cucumber via multiple mechanisms. These results will help to resolve the toxic effects of Cu2+ stress on plant growth and development. These results can be used for new strategies to solve problems associated with Cu2+ stress.


Assuntos
Cucumis sativus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peroxidação de Lipídeos/genética , Peroxidação de Lipídeos/fisiologia , Melatonina/metabolismo , Melatonina/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética
5.
Plant Cell Physiol ; 59(5): 930-945, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29415202

RESUMO

The NAC transcription factors play vital roles in responding to drought stress in plants; however, the molecular mechanisms remain largely unknown in cucumber. Suppression of CsATAF1 via RNA interference (RNAi) weakened drought stress tolerance in cucumber due to a higher water loss rate in leaves, a higher level of hydrogen peroxide (H2O2) and superoxide radicals (O2·-), increased malondialdehyde (MDA) content, lower Fv/Fm ratios and lower antioxidant enzyme activity. The analysis of root length and stomatal apertures showed that CsATAF1-RNAi cucumber plants were less responsive to ABA. In contrast, CsATAF1-overexpression (OE) plants showed increased drought stress tolerance and sensitivity to ABA. Quantitative PCR (qPCR) analysis showed that expression of several stress-responsive genes was significantly up-regulated in CsATAF1-OE transformants and down-regulated in CsATAF1-RNAi transformants. CsABI5, CsCu-ZnSOD and CsDREB2C were verified as direct target genes of CsATAF1. Yeast one-hybrid analysis and electrophoretic mobility shift assay (EMSA) further substantiated that CsATAF1 bound to the promoters of CsABI5, CsCu-ZnSOD and CsDREB2C. Transient expression in tobacco leaves and cucumber protoplasts showed that CsATAF1 directly up-regulated the expression of CsABI5, CsCu-ZnSOD and CsDREB2C. Our results demonstrated that CsATAF1 functioned as a positive regulator in response to drought stress by an ABA-dependent pathway and decreasing reactive oxygen species (ROS) accumulation in cucumber.


Assuntos
Ácido Abscísico/farmacologia , Adaptação Fisiológica , Cucumis sativus/fisiologia , Secas , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Adaptação Fisiológica/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Sequestradores de Radicais Livres/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Germinação/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , Análise de Sequência de DNA , Estresse Fisiológico/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
6.
Plant Physiol Biochem ; 207: 108392, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301328

RESUMO

Growth-regulating factors (GRFs) play crucial roles in plant growth, development, hormone signaling, and stress response. Despite their significance, the roles of GRFs in ginger remain largely unknown. Herein, 31 ginger ZoGRFs were identified and designated as ZoGRF1-ZoGRF31 according to their phylogenetic relationships. All ZoGRFs were characterized as unstable, hydrophilic proteins, with 29 predicted to be located in the nucleus. Functional cis-elements related to growth and development were enriched in ZoGRF's promoter regions. RNA-seq and RT-qPCR analysis revealed that ZoGRF12, ZoGRF24, and ZoGRF28 were highly induced in various growth and development stages, displaying differential regulation under waterlogging, chilling, drought, and salt stresses, indicating diverse expression patterns of ZoGRFs. Transient expression analysis in Nicotiana benthamiana indicated that overexpressing ZoGRF28 regulated the transcription levels of salicylic acid, jasmonic acid, and pattern-triggered immunity-related genes, increased chlorophyll content and contributed to reduced disease lesions and an increased net photosynthetic rate. This research lays the foundation for further understanding the biological roles of ZoGRFs.


Assuntos
Zingiber officinale , Zingiber officinale/genética , Filogenia , Fotossíntese , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Plant Sci ; 283: 385-395, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31128709

RESUMO

High temperature is a major environmental factor affecting plant growth. Heat shock proteins (Hsps) are molecular chaperones that play important roles in improving plant thermotolerance during heat stress. Spinach (Spinacia oleracea) is very sensitive to high temperature; however, the specific function of Hsps in spinach is unclear. In this study, cytosolic heat shock 70 protein (SoHSC70), which was induced by heat stress, was cloned from spinach. Overexpressing SoHSC70 in spinach calli and Arabidopsis enhanced their thermotolerance. In contrast, spinach seedlings with silenced SoHSC70 by virus-induced gene silencing (VIGS) showed more sensitivity to heat stress. Further analysis revealed that overexpressing SoHSC70 altered relative electrical conductivity (REC), malondialdehyde (MDA) content, photosynthetic rate, reactive oxygen species (ROS) accumulation and the activities of antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT) after the heat treatment. Taken together, our results suggest that overexpressing SoHSC70 positively affects heat tolerance by reducing membrane damage and ROS accumulation and improving activities of antioxidant enzymes.


Assuntos
Antioxidantes/metabolismo , Membrana Celular/metabolismo , Proteínas de Choque Térmico/fisiologia , Proteínas de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Spinacia oleracea/metabolismo , Termotolerância , Arabidopsis , Membrana Celular/fisiologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Malondialdeído/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Análise de Sequência de DNA , Spinacia oleracea/genética , Spinacia oleracea/fisiologia
8.
Plant Sci ; 280: 66-76, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30824030

RESUMO

Switchgrass (Panicum virgatum L.) is a bioenergy crop; thus, it is important to improve biomass to effectively produce bioethanol, particularly under adverse stress conditions. NAC transcription factors are involved in the abiotic stress response. PvNAC1 was isolated in the nucleus of switchgrass, with its C-terminal region containing a transcriptional activation domain. PvNAC1 expression was induced by dehydration, salt, H2O2, and abscisic acid treatments. Overexpressing (OE) PvNAC1 improved growth performance, leading to significantly taller and heavier (dry weight) plants. Moreover, cellulose content was significantly higher in OE plants, indicating that PvNAC1 plays an important role regulating growth and bioethanol production. PvNAC1 RNA interference (RNAi) switchgrass plants exhibited reduced dry weight and cellulose content. OE PvNAC1 enhanced tolerance to salt stress, through higher reactive oxygen species scavenging ability and less Na+ and more K+ accumulation in roots and shoots. RNAi plants were more sensitive to salt stress. The quantitative polymerase chain reaction results revealed that some stress responsive genes, three antioxidant enzymatic genes, and an ion homeostasis-related gene were upregulated in OE plants and downregulated in RNAi plants. These results show that PvNAC1 functions as a transcriptional activator in response to salt stress and growth.


Assuntos
Panicum/metabolismo , Sódio/metabolismo , Biomassa , Celulose/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal
9.
Sci Rep ; 8(1): 13349, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190519

RESUMO

NACs are one of the largest transcription factor families in plants and are involved in the response to abiotic stress. BoNAC019, a homologue of AtNAC019, was isolated from cabbage (Brassica oleracea). BoNAC019 was localized in the nucleus and functioned as a transcriptional activator. The expression of BoNAC019 was induced by dehydration, salt, abscisic acid (ABA), and H2O2 treatments. BoNAC019 overexpressing plants were generated to explore the function of BoNAC019 in response to drought stress. Overexpression (OE) of BoNAC019 reduced drought tolerance with lower survival rate, higher water loss rate, lower proline content and ABA content. The seed germination and root length assays of BoNAC019-OE plants showed decreased sensitivity to ABA. Under drought condition, antioxidant enzymes and anthocyanin content decreased in BoNAC019 -OE plants, resulting in the accumulation of more reactive oxygen species (ROS), which cause damage to plants. Several stress-responsive genes, antioxidant enzymatic genes, anthocyanin biosynthetic genes and ABA signaling genes were down-regulated under drought condition while the ABA catabolism genes were induced in BoNAC019-OE plants under both normal and drought conditions. Our results demonstrated that BoNAC019 might participated in regulating drought tolerance by inducing ABA catabolism genes and decreasing ABA content.


Assuntos
Antocianinas , Arabidopsis , Brassica/genética , Proteínas de Plantas , Plantas Geneticamente Modificadas , Fatores de Transcrição , Antocianinas/biossíntese , Antocianinas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Desidratação/genética , Desidratação/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Front Plant Sci ; 8: 2156, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29410672

RESUMO

Aluminum (Al) is present in approximately 50% of the arable land worldwide and is regarded as the main limiting factor of crop yield on acidic soil. Al-induced root malate efflux plays an important role in the Al tolerance of plants. Here, the aluminum induced malate transporter BoALMT1 (KF322104) was cloned from cabbage (Brassica oleracea). BoALMT1 showed higher expression in roots than in shoots. The expression of BoALMT1 was specifically induced by Al treatment, but not the trivalent cations lanthanum (La), cadmium (Cd), zinc (Zn), or copper (Cu). Subcellular localization studies were performed in onion epidermal cells and revealed that BoALMT1 was localized at the plasma membrane. Scanning Ion-selective Electrode Technique was used to analyze H+ flux. Xenopus oocytes and Arabidopsis thaliana expressing BoALMT1 excreted more H+ under Al treatment. Overexpressing BoALMT1 in transgenic Arabidopsis resulted in enhanced Al tolerance and increased malate secretion. The results suggested that BoALMT1 functions as an Al-resistant gene and encodes a malate transporter. Expressing BoALMT1 in Xenopus oocytes or A. thaliana indicated that BoALMT1 could increase malate secretion and H+ efflux to resist Al tolerance.

11.
Sci Rep ; 6: 31814, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27545827

RESUMO

The function of aquaporin (AQP) protein in transporting water is crucial for plants to survive in drought stress. With 47 homologues in tomato (Solanum lycopersicum) were reported, but the individual and integrated functions of aquaporins involved in drought response remains unclear. Here, three plasma membrane intrinsic protein genes, SlPIP2;1, SlPIP2;7 and SlPIP2;5, were identified as candidate aquaporins genes because of highly expressed in tomato roots. Assay on expression in Xenopus oocytes demonstrated that SlPIP2s protein displayed water channel activity and facilitated water transport into the cells. With real-time PCR and in situ hybridization analysis, SlPIP2s were considered to be involved in response to drought treatment. To test its function, transgenic Arabidopsis and tomato lines overexpressing SlPIP2;1, SlPIP2;7 or SlPIP2;5 were generated. Compared with wild type, the over-expression of SlPIP2;1, SlPIP2;7 or SlPIP2;5 transgenic Arabidopsis and tomato plants all showed significantly higher hydraulic conductivity levels and survival rates under both normal and drought conditions. Taken together, this study concludes that aquaporins (SlPIP2;1, SlPIP2;7 and SlPIP2;5) contribute substantially to root water uptake in tomato plants through improving plant water content and maintaining osmotic balance.


Assuntos
Aquaporinas/genética , Aquaporinas/metabolismo , Secas , Solanum lycopersicum/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Fisiológico , Distribuição Tecidual , Xenopus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA