RESUMO
Aqueous electrolytes with a low voltage window (1.23 V) and prone side reactions, such as hydrogen evolution reaction and cathode dissolution, compromise the advantages of high safety and low cost of aqueous metal-ion batteries. Herein, introducing catechol (CAT) into the aqueous electrolyte, an outer sphere electron transfer mechanism is initiated to inhibit the water reactivity, achieving an electrochemical window of 3.24 V. In a typical Zn-ion battery, the outer sphere electrons jump from CAT to Zn2+-H2O at a geometrically favorable situation and between the solvation molecules without breaking or forming chemical bonds as that of the inner sphere electron transfers. The excited state π-π stacking further leads to the outer sphere electron transfer occurring at the electrolyte/electrode interface. This high-voltage electrolyte allows achieving an operating voltage two times higher than that of the usual aqueous electrolytes and provides almost the highest energy density and power density for the V2O5-based aqueous Zn-ion full batteries. The Zn//Zn symmetric battery delivers a 4000 h lifespan, and the Zn//V2O5 full battery achieves a â¼380 W h kg-1 energy density and a 92% capacity retention after 3000 cycles at 1 A g-1 and a 2.4 V output voltage. This outer sphere electron transfer strategy paves the way for designing high-voltage aqueous electrolytes.
RESUMO
The pursuit of robust, long-range magnetic ordering in two-dimensional (2D) materials holds immense promise for driving technological advances. However, achieving this goal remains a grand challenge due to enhanced quantum and thermal fluctuations as well as chemical instability in the 2D limit. While magnetic ordering has been realized in atomically thin flakes of transition metal chalcogenides and metal halides, these materials often suffer from air instability. In contrast, 2D carbon-based materials are stable enough, yet the challenge lies in creating a high density of local magnetic moments and controlling their long-range magnetic ordering. Here, we report a novel wafer-scale synthesis of an air-stable metallo-carbon nitride monolayer (MCN, denoted as MN4/CNx), featuring ultradense single magnetic atoms and exhibiting robust room-temperature ferromagnetism. Under low-pressure chemical vapor deposition conditions, thermal dehydrogenation and polymerization of metal phthalocyanine (MPc) on copper foil at elevated temperature generate a substantial number of nitrogen coordination sites for anchoring magnetic single atoms in monolayer MN4/CNx (where M = Fe, Co, and Ni). The incorporation of densely populating MN4 sites into monolayer MCN networks leads to robust ferromagnetism up to room temperature, enabling the observation of anomalous Hall effects with excellent chemical stability. Detailed electronic structure calculations indicate that the presence of high-density metal sites results in the emergence of spin-split d-bands near the Fermi level, causing a favorable long-range ferromagnetic exchange coupling through direct exchange interactions. Our work demonstrates a novel synthesis approach for wafer-scale MCN monolayers with robust room-temperature ferromagnetism and may shed light on practical electronic and spintronic applications.
RESUMO
The growth of flexible semiconductor thin films and membranes is highly desirable for the fabrication of next-generation wearable devices. In this work, we have developed a one-step, surface tension-driven method for facile and scalable growth of silver sulfide (Ag2S) membranes with a nanomesh structure. The nanomesh membrane can in principle reach infinite size but only limited by the reactor size, while the thickness is self-limited to ca. 50 nm. In particular, the membrane can be continuously regenerated at the water surface after being transferred for mechanical and electronic tests. The free-standing membrane demonstrates exceptional flexibility and strength, resulting from the nanomesh structure and the intrinsic plasticity of the Ag2S ligaments, as revealed by robust manipulation, nanoindentation tests and a pseudo-in situ tensile test under scanning electron microscope. Bendable electronic resistance-switching devices are fabricated based on the nanomesh membrane.
Assuntos
Semicondutores , Compostos de Prata , EletrônicaRESUMO
In biomolecular electronics, the role of structural order in charge transport (CT) is poorly understood. It has been reported that the metal oxide cores of protein cages (e.g., iron oxide and ferrihydrite nanoparticles (NPs) present in ferritin and E2-LFtn, which is E2 protein engineered with an iron-binding sequence) play an important role in the mechanism of CT. At the same time, the NP core also plays a major role in the structural integrity of the proteins. This paper describes the role of structural order in CT across tunnel junctions by comparing three iron-storing proteins. They are (1) DNA binding protein from starved cells (Dps, diameter (∅) = 9 nm); (2) engineered archaeal ferritin (AfFtn-AA, ∅ = 12 nm); and (3) engineered E2 of pyruvate dehydrogenase enzyme complex (E2-LFtn, ∅ = 25 nm). Both holo-Dps and apo-Dps proteins undergo CT by coherent tunneling because their globular architecture and relative structural stability provide a coherent conduction pathway. In contrast, apo-AfFtn-AA forms a disordered structure across which charges have to tunnel incoherently, but holo-AfFtn-AA retains its globular structure and supports coherent tunneling. The large E2-LFtn always forms disordered structures across which charges incoherently tunnel regardless of the presence of the NP core. These findings highlight the importance of structural order in the mechanism of CT across biomolecular tunnel junctions.
Assuntos
Proteínas de Ligação a DNA , Ferritinas , Ferritinas/química , Proteínas de Ligação a DNA/metabolismo , Ferro/química , Óxidos , Oxirredutases/metabolismo , PiruvatosRESUMO
Rechargeable aqueous zinc-ion batteries (ZIBs) are promising in stationary grid energy storage due to their advantages in safety and cost-effectiveness, and the search for competent cathode materials is one core task in the development of ZIBs. Herein, the authors design a 2D heterostructure combining amorphous vanadium pentoxide and electrochemically produced graphene oxide (EGO) using a fast and scalable spray drying technique. The unique 2D heterostructured xerogel is achieved by controlling the concentration of EGO in the precursor solution. Driven by the improved electrochemical kinetics, the resultant xerogel can deliver an excellent rate capability (334 mAh g-1 at 5 A g-1 ) as well as a high specific capacity (462 mAh g-1 at 0.2 A g-1 ) as the cathode material in ZIB. It is also shown that the coin cell constructed based on spray-dried xerogel can output steady, high energy densities over a broad power density window. This work provides a scalable and cost-effective approach for making high performance electrode materials from cheap sources through existing industrialized materials processing.
RESUMO
Periodic nanostructures, a group of nanomaterials consisting of single or multiple nano units/components periodically arranged into ordered patterns (e.g., vertical and lateral superlattices), have attracted tremendous attention in recent years due to their extraordinary physical and chemical properties that offer a huge potential for a multitude of applications in energy conversion, electronic and optoelectronic applications. Recent advances in the preparation strategies of periodic nanostructures, including self-assembly, epitaxy, and exfoliation, have paved the way to rationally modulate their ferroelectricity, superconductivity, band gap and many other physical and chemical properties. For example, the recent discovery of superconductivity observed in "magic-angle" graphene superlattices has sparked intensive studies in new ways, creating superlattices in twisted 2D materials. Recent development in the various state-of-the-art preparations of periodic nanostructures has created many new ideas and findings, warranting a timely review. In this review, we discuss the current advances of periodic nanostructures, including their preparation strategies, property modulations and various applications.
RESUMO
Deoxyribonucleic acid (DNA) has been hypothesized to act as a molecular wire due to the presence of an extended π-stack between base pairs, but the factors that are detrimental in the mechanism of charge transport (CT) across tunnel junctions with DNA are still unclear. Here we systematically investigate CT across dense DNA monolayers in large-area biomolecular tunnel junctions to determine when intrachain or interchain CT dominates and under which conditions the mechanism of CT becomes thermally activated. In our junctions, double-stranded DNA (dsDNA) is 30-fold more conductive than single-stranded DNA (ssDNA). The main reason for this large change in conductivity is that dsDNA forms ordered monolayers where intrachain tunneling dominates, resulting in high CT rates. By varying the temperature T and the length of the DNA fragments in the junctions, which determines the tunneling distance, we reveal a complex interplay between T, the length of DNA, and structural order on the mechanism of charge transport. Both the increase in the tunneling distance and the decrease in structural order result in a change in the mechanism of CT from coherent tunneling to incoherent tunneling (hopping). Our results highlight the importance of the interplay between structural order, tunneling distance, and temperature on the CT mechanism across DNA in molecular junctions.
Assuntos
DNA de Cadeia Simples/química , Condutividade Elétrica , Conformação de Ácido Nucleico , TemperaturaRESUMO
Aliovalent doping is widely adopted to tune the electronic structure of transition-metal oxides for design of low-cost, active electrocatalysts. Here, using single-crystalline thin films as model electrocatalysts, the structure-activity relationship of Fe states doping in perovskite LaNiO3 for oxygen evolution reaction (OER) is studied. Fe4+ state is found to be crucial for enhancing the OER activity of LaNiO3 , dramatically increasing the activity by six times, while Fe3+ has negligible effect. Spectroscopic studies and DFT calculations indicate Fe4+ states enhance the degree of Ni/Fe 3d and O 2p hybridization, and meanwhile produce down-shift of the unoccupied density of states towards lower energies. Such electronic features reduce the energy barrier for interfacial electron transfer for water oxidization by 0.2 eV. Further theoretical calculations and H/D isotope experiments reveal the electronic states associated with Fe4+ -O2- -Ni3+ configuration accelerate the deprotonation of *OH to *O (rate-determining step), and thus facilitate fast OER kinetics.
RESUMO
To avoid crosstalk and suppress leakage currents in resistive random access memories (RRAMs), a resistive switch and a current rectifier (diode) are usually combined in series in a one diode-one resistor (1D-1R) RRAM. However, this complicates the design of next-generation RRAM, increases the footprint of devices and increases the operating voltage as the potential drops over two consecutive junctions1. Here, we report a molecular tunnel junction based on molecules that provide an unprecedented dual functionality of diode and variable resistor, resulting in a molecular-scale 1D-1R RRAM with a current rectification ratio of 2.5 × 104 and resistive on/off ratio of 6.7 × 103, and a low drive voltage of 0.89 V. The switching relies on dimerization of redox units, resulting in hybridization of molecular orbitals accompanied by directional ion migration. This electric-field-driven molecular switch operating in the tunnelling regime enables a class of molecular devices where multiple electronic functions are preprogrammed inside a single molecular layer with a thickness of only 2 nm.
RESUMO
Materials with flat bands are considered as ideal platforms to explore strongly correlated physics such as the fractional quantum hall effect, high-temperature superconductivity, and more. In theory, a Kagome lattice with only nearest-neighbor hopping can give rise to a flat band. However, the successful fabrication of Kagome lattices is still very limited. Here, we provide a new design principle to construct the Kagome lattice by trapping atoms into Kagome arrays of potential valleys, which can be realized on a potassium-decorated phosphorus-gold surface alloy. Theoretical calculations show that the flat band is less correlated with the neighboring trivial electronic bands, which can be further isolated and dominate around the Fermi energy with increased Kagome lattice parameters of potassium atoms. Our results provide a new strategy for constructing Kagome lattices, which serve as an ideal platform to study topological and more general flat band phenomena.
RESUMO
Practical applications of two-dimensional (2D) black phosphorus (BP) are limited by its fast degradation under ambient conditions, for which many different mechanisms have been proposed; however, an atomic level understanding of the degradation process is still hindered by the absence of bottom-up methods for the growth of large-scale few-layer black phosphorus. Recent experimental success in the fabrication of single-layer blue phosphorus provides a model system to probe the oxidation mechanism of two-dimensional (2D) phosphorene down to single-layer thicknesses. Here, we report an atomic-scale investigation of the interaction between molecular oxygen and blue phosphorus. The atomic structure of blue phosphorus and the local binding sites of oxygen have been precisely identified using qPlus-based noncontact atomic force microscopy. A combination of low-temperature scanning tunneling microscopy and X-ray photoelectron spectroscopy measurements reveal a thermally reversible oxidation process of blue phosphorus in a pure oxygen atmosphere. Our study clearly demonstrates the essential role of oxygen in the initial oxidation process, and it sheds further light on the fundamental pathways of the degradation mechanism.
RESUMO
The ability to use mechanical strain to steer chemical reactions creates completely new opportunities for solution- and solid-phase synthesis of functional molecules and materials. However, this strategy is not readily applied in the bottom-up on-surface synthesis of well-defined nanostructures. We report an internal strain-induced skeletal rearrangement of one-dimensional (1D) metal-organic chains (MOCs) via a concurrent atom shift and bond cleavage on Cu(111) at room temperature. The process involves Cu-catalyzed debromination of organic monomers to generate 1,5-dimethylnaphthalene diradicals that coordinate to Cu adatoms, forming MOCs with both homochiral and heterochiral naphthalene backbone arrangements. Bond-resolved non-contact atomic force microscopy imaging combined with density functional theory calculations showed that the relief of substrate-induced internal strain drives the skeletal rearrangement of MOCs via 1,3-H shifts and shift of Cu adatoms that enable migration of the monomer backbone toward an energetically favorable registry with the Cu(111) substrate. Our findings on this strain-induced structural rearrangement in 1D systems will enrich the toolbox for on-surface synthesis of novel functional materials and quantum nanostructures.
RESUMO
The electronic structures of rubrene films deposited on CH3NH3PbI3 perovskite have been investigated using in situ ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS). It was found that rubrene molecules interacted weakly with the perovskite substrate. Due to charge redistribution at their interface, a downward 'band bending'-like energy shift of â¼0.3 eV and an upward band bending of â¼0.1 eV were identified at the upper rubrene side and the CH3NH3PbI3 substrate side, respectively. After the energy level alignment was established at the rubrene/CH3NH3PbI3 interface, its highest occupied molecular orbital (HOMO)-valence band maximum (VBM) offset was found to be as low as â¼0.1 eV favoring the hole extraction with its lowest unoccupied molecular orbital (LUMO)-conduction band minimum (CBM) offset as large as â¼1.4 eV effectively blocking the undesired electron transfer from perovskite to rubrene. As a demonstration, simple inverted planar solar cell devices incorporating rubrene and rubrene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transport layers (HTLs) were fabricated in this work and yielded a champion power conversion efficiency of 8.76% and 13.52%, respectively. Thus, the present work suggests that a rubrene thin film could serve as a promising hole transport layer for efficient perovskite-based solar cells.
RESUMO
The reversible selective hydrogenation and dehydrogenation of individual manganese phthalocyanine (MnPc) molecules has been investigated using photoelectron spectroscopy (PES), low-temperature scanning tunneling microscopy (LT-STM), synchrotron-based near edge X-ray absorption fine structure (NEXAFS) measurements, and supported by density functional theory (DFT) calculations. It is shown conclusively that interfacial and intramolecular charge transfer arises during the hydrogenation process. The electronic energetics upon hydrogenation is identified, enabling a greater understanding of interfacial and intramolecular charge transportation in the field of single-molecule electronics.
RESUMO
An atomic-scale understanding of gas adsorption mechanisms on metal-porphyrins or metal-phthalocyanines is essential for their practical application in biological processes, gas sensing, and catalysis. Intensive research efforts have been devoted to the study of coordinative bonding with relatively active small molecules such as CO, NO, NH3, O2, and H2. However, the binding of single nitrogen atoms has never been addressed, which is both of fundamental interest and indeed essential for revealing the elementary chemical binding mechanism in nitrogen reduction processes. Here, we present a simple model system to investigate, at the single-molecule level, the binding of activated nitrogen species on the single Mn atom contained within the manganese phthalocyanine (MnPc) molecule supported on an inert graphite surface. Through the combination of in situ low-temperature scanning tunneling microscopy, scanning tunneling spectroscopy, ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and density functional theory calculations, the active site and the binding configuration between the activated nitrogen species (neutral nitrogen atom) and the Mn center of MnPc are investigated at the atomic scale.
RESUMO
Rechargeable aqueous Zn-ion batteries have been deemed a promising energy storage device. However, the dendrite growth and side reactions have hindered their practical application. Herein, inspired by the ultrafluidic and K+ ion-sieving flux through enzyme-gated potassium channels (KcsA) in biological plasma membranes, a metal-organic-framework (MOF-5) grafted with -ClO4 groups (MOF-ClO4) as functional enzymes is fabricated to mimic the ultrafluidic lipid-bilayer structure for gating Zn2+ 'on' and anions 'off' states. The MOF-ClO4 achieved perfect Zn2+/SO4 2- selectivity (â¼10), enhanced Zn2+ transfer number ([Formula: see text]) and the ultrafluidic Zn2+ flux (1.9 × 10-3 vs. 1.67 mmol m-2 s-1 for KcsA). The symmetric cells based on MOF-ClO4 achieve a lifespan of over 5400 h at 10 mA cm-2/20 mAh cm-2. Specifically, the performance of the PMCl-Zn//V2O5 pouch cell keeps 81% capacity after 2000 cycles at 1 A g-1. The regulated ion transport, by learning from a biological plasma membrane, opens a new avenue towards ultralong lifespan aqueous batteries.
RESUMO
To develop new types of dynamic molecular devices with atomic-scale control over electronic function, new types of molecular switches are needed with time-dependent switching probabilities. We report such a molecular switch based on proton-coupled electron transfer (PCET) reaction with giant hysteric negative differential resistance (NDR) with peak-to-valley ratios of 120 ± 6.6 and memory on/off ratios of (2.4 ± 0.6) × 103. The switching dynamics probabilities are modulated by bias voltage sweep rate and can also be controlled by pH and relative humidity, confirmed by kinetic isotope effect measurements. The demonstrated dynamical and environment-specific modulation of giant NDR and memory effects provide new opportunities for bioelectronics and artificial neural networks.
RESUMO
Self-assembly is a key guiding principle for the design of complex nanostructures. Substituted beta oligoamides offer versatile building blocks that can have inherent folding characteristics, offering geometrically defined functionalities that can specifically bind and assemble with predefined morphological characteristics. In this work hierarchical self-assembly is implemented based on metal coordinating helical beta-oligoamides crosslinked with transition metals selected for their favourable coordination geometries, Fe2+, Cu2+, Ni2+, Co2+, Zn2+, and two metalates, MoO42-, and WO42-. The oligoamide Ac-ß3Aß3Vß3S-αHαHαH-ß3Aß3Vß3A (3H) was designed to allow crosslinking via three distinct faces of the helical unit, with a possibility of forming three dimensional framework structures. Atomic force microscopy (AFM) confirmed the formation of specific morphologies that differ characteristically with each metal. X-Ray photoelectron spectroscopy (XPS) results reveal that the metal centres can be reduced in the final structures, confirming strong chemical interaction. Time of flight secondary ion mass spectrometry (ToF-SIMS) confirmed the spatial distribution of metals within the self-assembled networks, also revealing molecular fragments that confirm coordination to histidine and carboxyl moieties. The metalates MoO42- and WO42- were also able to induce the formation of specific superstructure morphologies. It was observed that assembly with either of nickel, copper, and molybdate form thin films, while cobalt, zinc, and tungstate produced specific three dimensional networks of oligoamides. Iron was found to form both a thin film and a complex hierarchical assembly with the 3H simultaneously. The design of the 3H substituted beta oligoamide to readily form metallosupramolecular frameworks was demonstrated with a range of metals and metalates with a degree of control over layer thicknesses as a function of the metal/metalate. The results validate and broaden the metallosupramolecular framework concept and establish a platform technology for the design of functional thin layer materials.
RESUMO
It is well known that electrocatalytic oxygen evolution reaction (OER) activities primarily depend on the active centers of electrocatalysts. In some oxide electrocatalysts, high-valence metal sites (e.g., molybdenum oxide) are generally not the real active centers for electrocatalytic reactions, which is largely due to their undesired intermediate adsorption behaviors. As a proof-of-concept, molybdenum oxide catalysts are selected as a representative model, in which the intrinsic molybdenum sites are not the favorable active sites. Via phosphorus-modulated defective engineering, the inactive molybdenum sites can be regenerated as synergistic active centers for promoting OER. By virtue of comprehensive comparison , it is revealed that the OER performance of oxide catalysts is highly associated with the phosphorus sites and the molybdenum/oxygen defects. Specifically, the optimal catalyst delivers an overpotential of 287 mV to achieve the current density of 10 mA cm-2 , accompanied by only 2% performance decay for continuous operation up to 50 h. It is expected that this work sheds light on the enrichment of metal active sites via activating inert metal sites on oxide catalysts for boosting electrocatalytic properties.
RESUMO
Recently, two-dimensional (2D) materials and their heterostructures have attracted considerable attention in gas sensing applications. In this work, we synthesized 2D MoS2@MoO3 heterostructures through post-sulfurization of α-MoO3 nanoribbons grown via vapor phase transport (VPT) and demonstrated highly sensitive NO2 gas sensors based on the hybrid heterostructures. The morphological, structural, and compositional properties of the MoS2@MoO3 hybrids were studied by a combination of advanced characterization techniques revealing a core-shell structure with the coexistence of 2H-MoS2 multilayers and intermediate molybdenum oxysulfides on the surface of α-MoO3. The MoS2@MoO3 hybrids also exhibit room-temperature ferromagnetism, revealed by vibrating sample magnetometry (VSM), as a result of the sulfurization process. The MoS2@MoO3 gas sensors display a p-type-like response towards NO2 with a detection limit of 0.15 ppm at a working temperature of 125 °C, as well as superb selectivity and reversibility. This p-type-like sensing behavior is attributed to the heterointerface of MoS2-MoO3 where interfacial charge transfer leads to a p-type inversion layer in MoS2, and is enhanced by magnetic dipole interactions between the paramagnetic NO2 and the ferromagnetic sensing layer. Our study demonstrates the promising application of 2D molybdenum hybrid compounds in gas sensing applications with a unique combination of electronic and magnetic properties.