Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.276
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(3): 502-520.e19, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31983537

RESUMO

The tumor microenvironment (TME) is critical for tumor progression. However, the establishment and function of the TME remain obscure because of its complex cellular composition. Using a mouse genetic system called mosaic analysis with double markers (MADMs), we delineated TME evolution at single-cell resolution in sonic hedgehog (SHH)-activated medulloblastomas that originate from unipotent granule neuron progenitors in the brain. First, we found that astrocytes within the TME (TuAstrocytes) were trans-differentiated from tumor granule neuron precursors (GNPs), which normally never differentiate into astrocytes. Second, we identified that TME-derived IGF1 promotes tumor progression. Third, we uncovered that insulin-like growth factor 1 (IGF1) is produced by tumor-associated microglia in response to interleukin-4 (IL-4) stimulation. Finally, we found that IL-4 is secreted by TuAstrocytes. Collectively, our studies reveal an evolutionary process that produces a multi-lateral network within the TME of medulloblastoma: a fraction of tumor cells trans-differentiate into TuAstrocytes, which, in turn, produce IL-4 that stimulates microglia to produce IGF1 to promote tumor progression.


Assuntos
Astrócitos/metabolismo , Carcinogênese/metabolismo , Transdiferenciação Celular , Neoplasias Cerebelares/metabolismo , Meduloblastoma/metabolismo , Comunicação Parácrina , Animais , Linhagem da Célula , Neoplasias Cerebelares/patologia , Modelos Animais de Doenças , Feminino , Proteínas Hedgehog/metabolismo , Xenoenxertos , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Masculino , Meduloblastoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Microambiente Tumoral
2.
Proc Natl Acad Sci U S A ; 121(8): e2314914121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346202

RESUMO

Mavacamten is a FDA-approved small-molecule therapeutic designed to regulate cardiac function at the sarcomere level by selectively but reversibly inhibiting the enzymatic activity of myosin. It shifts myosin toward ordered off states close to the thick filament backbone. It remains elusive whether these myosin heads in the off state(s) can be recruited in response to physiological stimuli when required to boost cardiac output. We show that cardiac myosins stabilized in these off state(s) by mavacamten are recruitable by 1) Ca2+, 2) increased chronotropy [heart rate (HR)], 3) stretch, and 4) ß-adrenergic (ß-AR) stimulation, all known physiological inotropic interventions. At the molecular level, we show that Ca2+ increases myosin ATPase activity by shifting mavacamten-stabilized myosin heads from the inactive super-relaxed state to the active disordered relaxed state. At the myofilament level, both Ca2+ and passive lengthening can shift mavacamten-ordered off myosin heads from positions close to the thick filament backbone to disordered on states closer to the thin filaments. In isolated rat cardiomyocytes, increased stimulation rates enhanced shortening fraction in mavacamten-treated cells. This observation was confirmed in vivo in telemetered rats, where left-ventricular dP/dtmax, an index of inotropy, increased with HR in mavacamten-treated animals. Finally, we show that ß-AR stimulation in vivo increases left-ventricular function and stroke volume in the setting of mavacamten. Our data demonstrate that the mavacamten-promoted off states of myosin in the thick filament are at least partially activable, thus preserving cardiac reserve mechanisms.


Assuntos
Miócitos Cardíacos , Miosinas , Uracila/análogos & derivados , Animais , Ratos , Benzilaminas/farmacologia , Contração Muscular
3.
Circ Res ; 133(5): 430-443, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37470183

RESUMO

BACKGROUND: Modulating myosin function is a novel therapeutic approach in patients with cardiomyopathy. Danicamtiv is a novel myosin activator with promising preclinical data that is currently in clinical trials. While it is known that danicamtiv increases force and cardiomyocyte contractility without affecting calcium levels, detailed mechanistic studies regarding its mode of action are lacking. METHODS: Permeabilized porcine cardiac tissue and myofibrils were used for X-ray diffraction and mechanical measurements. A mouse model of genetic dilated cardiomyopathy was used to evaluate the ability of danicamtiv to correct the contractile deficit. RESULTS: Danicamtiv increased force and calcium sensitivity via increasing the number of myosins in the ON state and slowing cross-bridge turnover. Our detailed analysis showed that inhibition of ADP release results in decreased cross-bridge turnover with cross bridges staying attached longer and prolonging myofibril relaxation. Danicamtiv corrected decreased calcium sensitivity in demembranated tissue, abnormal twitch magnitude and kinetics in intact cardiac tissue, and reduced ejection fraction in the whole organ. CONCLUSIONS: As demonstrated by the detailed studies of Danicamtiv, increasing myosin recruitment and altering cross-bridge cycling are 2 mechanisms to increase force and calcium sensitivity in cardiac muscle. Myosin activators such as Danicamtiv can treat the causative hypocontractile phenotype in genetic dilated cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada , Camundongos , Animais , Suínos , Cardiomiopatia Dilatada/tratamento farmacológico , Cálcio/fisiologia , Miocárdio , Miosinas , Miócitos Cardíacos , Cardiotônicos
4.
Mol Ther ; 32(8): 2778-2797, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38822524

RESUMO

Dysregulated T cell activation underpins the immunopathology of rheumatoid arthritis (RA), yet the machineries that orchestrate T cell effector program remain incompletely understood. Herein, we leveraged bulk and single-cell RNA sequencing data from RA patients and validated protein disulfide isomerase family A member 3 (PDIA3) as a potential therapeutic target. PDIA3 is remarkably upregulated in pathogenic CD4 T cells derived from RA patients and positively correlates with C-reactive protein level and disease activity score 28. Pharmacological inhibition or genetic ablation of PDIA3 alleviates RA-associated articular pathology and autoimmune responses. Mechanistically, T cell receptor signaling triggers intracellular calcium flux to activate NFAT1, a process that is further potentiated by Wnt5a under RA settings. Activated NFAT1 then directly binds to the Pdia3 promoter to enhance the expression of PDIA3, which complexes with STAT1 or PKM2 to facilitate their nuclear import for transcribing T helper 1 (Th1) and Th17 lineage-related genes, respectively. This non-canonical regulatory mechanism likely occurs under pathological conditions, as PDIA3 could only be highly induced following aberrant external stimuli. Together, our data support that targeting PDIA3 is a vital strategy to mitigate autoimmune diseases, such as RA, in clinical settings.


Assuntos
Artrite Reumatoide , Isomerases de Dissulfetos de Proteínas , Fator de Transcrição STAT1 , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Humanos , Artrite Reumatoide/metabolismo , Camundongos , Animais , Fator de Transcrição STAT1/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Transporte Ativo do Núcleo Celular , Proteínas de Transporte/metabolismo , Transdução de Sinais , Proteínas de Ligação a Hormônio da Tireoide , Fatores de Transcrição NFATC/metabolismo , Ativação Linfocitária , Hormônios Tireóideos/metabolismo , Regulação da Expressão Gênica , Células Th17/metabolismo , Células Th17/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Modelos Animais de Doenças , Piruvato Quinase
5.
J Physiol ; 602(12): 2751-2762, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38695322

RESUMO

There is a growing appreciation that regulation of muscle contraction requires both thin filament and thick filament activation in order to fully activate the sarcomere. The prevailing mechano-sensing model for thick filament activation was derived from experiments on fast-twitch muscle. We address the question whether, or to what extent, this mechanism can be extrapolated to the slow muscle in the hearts of large mammals, including humans. We investigated the similarities and differences in structural signatures of thick filament activation in porcine myocardium as compared to fast rat extensor digitorum longus (EDL) skeletal muscle under relaxed conditions and sub-maximal contraction using small angle X-ray diffraction. Thick and thin filaments were found to adopt different structural configurations under relaxing conditions, and myosin heads showed different changes in configuration upon sub-maximal activation, when comparing the two muscle types. Titin was found to have an X-ray diffraction signature distinct from those of the overall thick filament backbone, and its spacing change appeared to be positively correlated to the force exerted on the thick filament. Structural changes in fast EDL muscle were found to be consistent with the mechano-sensing model. In porcine myocardium, however, the structural basis of mechano-sensing is blunted suggesting the need for additional activation mechanism(s) in slow cardiac muscle. These differences in thick filament regulation can be related to their different physiological roles where fast muscle is optimized for rapid, burst-like, contractions, and the slow cardiac muscle in large mammalian hearts adopts a more finely tuned, graded response to allow for their substantial functional reserve. KEY POINTS: Both thin filament and thick filament activation are required to fully activate the sarcomere. Thick and thin filaments adopt different structural configurations under relaxing conditions, and myosin heads show different changes in configuration upon sub-maximal activation in fast extensor digitorum longus muscle and slow porcine cardiac muscle. Titin has an X-ray diffraction signature distinct from those of the overall thick filament backbone and this titin reflection spacing change appeared to be directly proportional to the force exerted on the thick filament. Mechano-sensing is blunted in porcine myocardium suggesting the need for additional activation mechanism(s) in slow cardiac muscle. Fast skeletal muscle is optimized for rapid, burst-like contractions, and the slow cardiac muscle in large mammalian hearts adopts a more finely tuned graded response to allow for their substantial functional reserve.


Assuntos
Miocárdio , Animais , Suínos , Miocárdio/metabolismo , Conectina/metabolismo , Ratos , Masculino , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Sarcômeros/fisiologia , Sarcômeros/metabolismo , Fibras Musculares de Contração Lenta/fisiologia , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , Difração de Raios X , Contração Muscular/fisiologia , Miosinas/metabolismo , Miosinas/fisiologia
6.
J Am Chem Soc ; 146(8): 5643-5649, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38327018

RESUMO

We developed a method for the enantioselective synthesis of germanium-stereogenic compounds by the desymmetric carbene insertion of dihydrogermanes. A chiral rhodium phosphate catalyst decomposes diaryldiazo-methanes to generate rhodium carbenes that insert enantioselectively into one of the two Ge-H bonds of dihydrogermanes to form germanium-stereogenic compounds under mild reaction conditions. By this method, a variety of chiral germanes with germanium-stereogenic centers were synthesized in high yields and excellent enantioselectivities. Kinetic studies of the reaction showed that the diazo decomposition process was the rate-determining step. The remaining Ge-H bond of the chiral germane products provides a possibility for preparing chiral tetra-substituted germanium-stereogenic compounds.

7.
J Am Chem Soc ; 146(5): 3458-3470, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38270100

RESUMO

Ligand modulation of transition-metal catalysts to achieve optimal reactivity and selectivity in alkene hydrofunctionalization is a fundamental challenge in synthetic organic chemistry. Hydroaminoalkylation, an atom-economical approach for alkylating amines using alkenes, is particularly significant for amine synthesis in the pharmaceutical, agrochemical, and fine chemical industries. However, the existing methods usually require specific substrate combinations to achieve precise regio- and stereoselectivity, which limits their practical utility. Protocols allowing for regiodivergent hydroaminoalkylation from the same starting materials, controlling both regiochemical and stereochemical outcomes, are currently absent. Herein, we report a ligand-controlled, regiodivergent nickel-catalyzed hydroaminoalkylation of unactivated alkenes with N-sulfonyl amines. The reaction initiates with amine dehydrogenation and involves aza-nickelacycle intermediates. Tritert-butylphosphine promotes branched regioselectivity and syn diastereoselectivity, whereas ethyldiphenylphosphine enables linear selectivity, yielding regioisomers with inverse orientation. Systematic evaluation of diverse monodentate phosphine ligands reveals distinct regioselectivity cliffs, and % Vbur (min), a ligand steric descriptor, was established as a predictive parameter correlating ligand structure to regioselectivity. Computational investigations supported experimental findings, offering mechanistic insights into the origins of regioselectivity. Our method provides an efficient and predictable route for amine synthesis, demonstrating broad substrate scope, excellent tolerance toward various functional groups, and practical advantages. These include the use of readily available starting materials and cost-effective nickel(II) salts as precatalysts.

8.
J Am Chem Soc ; 146(32): 22157-22165, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39102638

RESUMO

Stereoconvergent reactions enable the transformation of mixed stereoisomers into well-defined, chiral products─a crucial strategy for handling Z/E-mixed olefins, which are common but challenging substrates in organic synthesis. Herein, we report a stereoconvergent and highly enantioselective method for synthesizing Z-homoallylic alcohols via the nickel-catalyzed reductive coupling of Z/E-mixed 1,3-dienes with aldehydes. This process is enabled by an N-heterocyclic carbene ligand characterized by C2-symmetric backbone chirality and bulky 2,6-diisopropyl N-aryl substituents. Our method achieves excellent stereocontrol over both enantioselectivity and Z-selectivity in a single step, producing chiral Z-homoallylic alcohols that are valuable in natural products and pharmaceuticals.

9.
J Am Chem Soc ; 146(40): 27274-27281, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39321390

RESUMO

The selective construction of bridged bicyclic scaffolds has garnered increasing attention because of their extensive use as saturated bioisosteres of arene in pharmaceutical industry. However, in sharp contrast to their racemic counterparts, assembling chiral bridged bicyclic structures in an enantioselective and regioselective manner remains challenging. Herein, we describe our protocol for constructing chiral 2-oxa-3-azabicyclo[3.1.1]heptanes (BCHeps) by enantioselective [4π + 2σ] cycloadditions of bicyclo[1.1.0]butanes (BCBs) and nitrones taking advantage of a chiral copper(II) complex as a Lewis acid catalyst. This method features mild conditions, good functional group tolerance, high yield (up to 99%), and excellent enantioselectivity (up to 99% ee). Density functional theory (DFT) calculation elucidates the origin of the reaction's enantioselectivity and the mechanism of BCB activation by Cu(II) complex.

10.
J Am Chem Soc ; 146(22): 14915-14921, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38781401

RESUMO

Unactivated aliphatic alkenes are particularly desirable as starting materials because they are readily accessible in large quantities, but the enantioselective intermolecular reductive coupling of unactivated alkenes with imines is challenging. In this paper, we report a method for nickel-catalyzed intermolecular reductive coupling reactions between aliphatic alkenes and imines to yield chiral amines with excellent enantioselectivities and good linear selectivities. The reaction conditions are compatible with a broad range of aliphatic alkenes, including those derived from bioactive molecules. The success of this method can be attributed to the use of newly developed monodentate chiral spiro phosphine ligands.

11.
Br J Cancer ; 131(2): 258-270, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834745

RESUMO

BACKGROUND: Diffuse invasion remains a primary cause of treatment failure in pediatric high-grade glioma (pHGG). Identifying cellular driver(s) of pHGG invasion is needed for anti-invasion therapies. METHODS: Ten highly invasive patient-derived orthotopic xenograft (PDOX) models of pHGG were subjected to isolation of matching pairs of invasive (HGGINV) and tumor core (HGGTC) cells. RESULTS: pHGGINV cells were intrinsically more invasive than their matching pHGGTC cells. CSC profiling revealed co-positivity of CD133 and CD57 and identified CD57+CD133- cells as the most abundant CSCs in the invasive front. In addition to discovering a new order of self-renewal capacities, i.e., CD57+CD133- > CD57+CD133+ > CD57-CD133+ > CD57-CD133- cells, we showed that CSC hierarchy was impacted by their spatial locations, and the highest self-renewal capacities were found in CD57+CD133- cells in the HGGINV front (HGGINV/CD57+CD133- cells) mediated by NANOG and SHH over-expression. Direct implantation of CD57+ (CD57+/CD133- and CD57+/CD133+) cells into mouse brains reconstituted diffusely invasion, while depleting CD57+ cells (i.e., CD57-CD133+) abrogated pHGG invasion. CONCLUSION: We revealed significantly increased invasive capacities in HGGINV cells, confirmed CD57 as a novel glioma stem cell marker, identified CD57+CD133- and CD57+CD133+ cells as a new cellular driver of pHGG invasion and suggested a new dual-mode hierarchy of HGG stem cells.


Assuntos
Antígeno AC133 , Neoplasias Encefálicas , Antígenos CD57 , Glioma , Invasividade Neoplásica , Células-Tronco Neoplásicas , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Humanos , Animais , Glioma/patologia , Glioma/imunologia , Glioma/metabolismo , Camundongos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Antígenos CD57/metabolismo , Criança , Antígeno AC133/metabolismo
12.
Mol Med ; 30(1): 152, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289602

RESUMO

VEXAS syndrome, an uncommon yet severe autoimmune disorder stemming from a mutation in the UBA1 gene, is the focus of this paper. The overview encompasses its discovery, epidemiological traits, genetic underpinnings, and clinical presentations. Delving into whether distinct genotypes yield varied clinical phenotypes in VEXAS patients, and the consequent adjustment of treatment strategies based on genotypic and clinical profiles necessitates thorough exploration within the clinical realm. Additionally, the current therapeutic landscape and future outlook are examined, with particular attention to the potential therapeutic roles of IL-6 inhibitors and JAK inhibitors, alongside an elucidation of prevailing limitations and avenues for further research. This study contributes essential theoretical groundwork and clinical insights for both diagnosing and managing VEXAS syndrome.


Assuntos
Interleucina-6 , Inibidores de Janus Quinases , Enzimas Ativadoras de Ubiquitina , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Inibidores de Janus Quinases/uso terapêutico , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Mutação , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/genética , Doenças Autoimunes/diagnóstico
13.
Small ; 20(3): e2305100, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37688343

RESUMO

Diabetic chronic wounds pose significant clinical challenges due to their characteristic features of impaired extracellular matrix (ECM) function, diminished angiogenesis, chronic inflammation, and increased susceptibility to infection. To tackle these challenges and provide a comprehensive therapeutic approach for diabetic wounds, the first coaxial electrospun nanocomposite membrane is developed that incorporates multifunctional copper peroxide nanoparticles (n-CuO2 ). The membrane's nanofiber possesses a unique "core/sheath" structure consisting of n-CuO2 +PVP (Polyvinylpyrrolidone)/PCL (Polycaprolactone) composite sheath and a PCL core. When exposed to the wound's moist environment, PVP within the sheath gradually disintegrates, releasing the embedded n-CuO2 . Under a weakly acidic microenvironment (typically diabetic and infected wounds), n-CuO2 decomposes to release H2 O2 and Cu2+ ions and subsequently produce ·OH through chemodynamic reactions. This enables the anti-bacterial activity mediated by reactive oxygen species (ROS), suppressing the inflammation while enhancing angiogenesis. At the same time, the dissolution of PVP unveils unique nano-grooved surface patterns on the nanofibers, providing desirable cell-guiding function required for accelerated skin regeneration. Through meticulous material selection and design, this study pioneers the development of functional nanocomposites for multi-modal wound therapy, which holds great promise in guiding the path to healing for diabetic wounds.


Assuntos
Diabetes Mellitus , Nanocompostos , Nanofibras , Humanos , Cicatrização , Pele/lesões , Nanocompostos/química , Nanofibras/química , Inflamação
14.
Small ; : e2407078, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350452

RESUMO

Bacterial biofilm formation is closely associated with persistent infections of medical implants, which can lead to implantation failure. Additionally, the reconstruction of the vascular network is crucial for achieving efficient osseointegration. Herein, an anti-biofilm nanoplatform based on L-arginine (LA)/new indocyanine green (NICG) that is anchored to strontim titanium oxide (SrTiO3) nano-arrays on a titanium (Ti) substrate by introducing polydopamine (PDA) serving as the interlayer is designed and successfully fabricated. Near-infrared light (NIR) is used to excite NICG, generating reactive oxygen species (ROS) that react with LA to release nitric oxide (NO) molecules. Utilizing the concentration-dependent effect of NO, high power density NIR irradiation applied during the early stage after implantation to release a high concentration of NO, which synergized with the photothermal effect of PDA to eliminate bacterial biofilm. Subsequently, the irradiation power density can be finely down-regulated to reduce the NO concentration in subsequent treatment for accelerating the reconstruction of blood vessels. Meanwhile, SrTiO3 nano-arrays improve the hydrophilicity of the implant surface and slowly release strontium (Sr) ions for continuously optimizing the osteogenic microenvironment. Effective biofilm elimination and revascularization alongside the continuous optimization of the osteogenic microenvironment can significantly enhance the osseointegration of the functionalized Ti implant in in vivo animal experiments.

15.
Small ; 20(10): e2306508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37919860

RESUMO

The design and fabrication of NO-evolving core-shell nanoparticles (denoted as NC@Fe), comprised of BNN6-laden COF@Fe3 O4 nanoparticles, are reported. This innovation extends to the modification of 3D printed polyetheretherketone scaffolds with NC@Fe, establishing a pioneering approach to multi-modal bone therapy tailored to address complications such as device-associated infections and osteomyelitis. This work stands out prominently from previous research, particularly those relying on the use of antibiotics, by introducing a bone implant capable of simultaneous NO gas therapy and photothermal therapy (PPT). Under NIR laser irradiation, the Fe3 O4 NP core (photothermal conversion agent) within NC@Fe absorbs photoenergy and initiates electron transfer to the loaded NO donor (BNN6), resulting in controlled NO release. The additional heat generated through photothermal conversion further propels the NC@Fe nanoparticles, amplifying the therapeutic reach. The combined effect of NO release and PPT enhances the efficacy in eradicating bacteria over a more extensive area around the implant, presenting a distinctive solution to conventional challenges. Thorough in vitro and in vivo investigations validate the robust potential of the scaffold in infection control, osteogenesis, and angiogenesis, emphasizing the timeliness of this unique solution in managing complicated bone related infectious diseases.


Assuntos
Estruturas Metalorgânicas , Polímeros , Benzofenonas , Polietilenoglicóis , Cetonas
16.
BMC Microbiol ; 24(1): 206, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858614

RESUMO

OBJECTIVE: This study aims to examine the impact of PE/PPE gene mutations on the transmission of Mycobacterium tuberculosis (M. tuberculosis) in China. METHODS: We collected the whole genome sequencing (WGS) data of 3202 M. tuberculosis isolates in China from 2007 to 2018 and investigated the clustering of strains from different lineages. To evaluate the potential role of PE/PPE gene mutations in the dissemination of the pathogen, we employed homoplastic analysis to detect homoplastic single nucleotide polymorphisms (SNPs) within these gene regions. Subsequently, logistic regression analysis was conducted to analyze the statistical association. RESULTS: Based on nationwide M. tuberculosis WGS data, it has been observed that the majority of the M. tuberculosis burden in China is caused by lineage 2 strains, followed by lineage 4. Lineage 2 exhibited a higher number of transmission clusters, totaling 446 clusters, of which 77 were cross-regional clusters. Conversely, there were only 52 transmission clusters in lineage 4, of which 9 were cross-regional clusters. In the analysis of lineage 2 isolates, regression results showed that 4 specific gene mutations, PE4 (position 190,394; c.46G > A), PE_PGRS10 (839,194; c.744 A > G), PE16 (1,607,005; c.620T > G) and PE_PGRS44 (2,921,883; c.333 C > A), were significantly associated with the transmission of M. tuberculosis. Mutations of PE_PGRS10 (839,334; c.884 A > G), PE_PGRS11 (847,613; c.1455G > C), PE_PGRS47 (3,054,724; c.811 A > G) and PPE66 (4,189,930; c.303G > C) exhibited significant associations with the cross-regional clusters. A total of 13 mutation positions showed a positive correlation with clustering size, indicating a positive association. For lineage 4 strains, no mutations were found to enhance transmission, but 2 mutation sites were identified as risk factors for cross-regional clusters. These included PE_PGRS4 (338,100; c.974 A > G) and PPE13 (976,897; c.1307 A > C). CONCLUSION: Our results indicate that some PE/PPE gene mutations can increase the risk of M. tuberculosis transmission, which might provide a basis for controlling the spread of tuberculosis.


Assuntos
Mutação , Mycobacterium tuberculosis , Polimorfismo de Nucleotídeo Único , Tuberculose , Sequenciamento Completo do Genoma , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , China/epidemiologia , Humanos , Tuberculose/transmissão , Tuberculose/microbiologia , Tuberculose/epidemiologia , Genoma Bacteriano , Feminino , Masculino , Proteínas de Bactérias/genética , Adulto
17.
Acc Chem Res ; 56(3): 332-349, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36689780

RESUMO

ConspectusCatalytic asymmetric hydrogenation is one of the most reliable, powerful, and environmentally benign methods for the synthesis of chiral molecules with high atom economy and has been successfully applied in the industrial production of pharmaceuticals, agrochemicals, and fragrances. The key to achieving highly efficient and highly enantioselective hydrogenation reactions is the design and synthesis of chiral catalysts.Our recent studies involving iridium complexes of bidentate chiral spiro aminophosphine ligands (Ir-SpiroAP) have revealed that adding another coordinating group on the nitrogen atom to form a tridentate ligand can provide catalysts with markedly higher stability, enantioselectivity, and efficiency. Specifically, chiral Ir-SpiroAP catalysts bearing an added pyridine group (designated Ir-SpiroPAP) exhibit high activity and excellent enantioselectivity in the asymmetric hydrogenation of a wide range of carbonyl compounds, including aryl ketones, ß- and δ-ketoesters, α,ß-unsaturated ketones and esters, and racemic α-substituted lactones, as well as highly electron-deficient alkenes such as α,ß-unsaturated malonates and analogues. The efficiency of the Ir-SpiroPAP catalysts is extremely high: in the hydrogenation of aryl ketones, turnover numbers reach 4.5 million, which is the highest value reported to date for a molecular catalyst. Moreover, when a thioether or a bulky triarylphosphine group is added to afford tridentate ligands designated SpiroSAP and SpiroPNP, respectively, the resulting iridium catalysts show high efficiency and enantioselectivity for asymmetric hydrogenation of ß-alkyl-ß-ketoesters and dialkyl ketones, which are challenging substrates. Furthermore, chiral spiro catalysts containing an added oxazoline moiety (Ir-SpiroOAP) show high enantioselectivity for asymmetric hydrogenation of α-keto amides and racemic α-aryloxy lactones. The above-described catalysts have been used for enantioselective synthesis of chiral pharmaceuticals and other bioactive compounds.We have shown that chiral spiro ligands that combine a rigid skeleton with tridentate coordination stabilize iridium catalysts. The careful tailoring of the substituents on the ligand creates a chiral environment around the active metal center of the catalyst that can precisely discriminate between the two faces of a substrate carbonyl group. These factors are key for controlling the activity, enantioselectivity, and turnover numbers of asymmetric hydrogenation catalysts. We expect that catalysts based on iridium, and other transition metals, coordinated by tridentate chiral ligands with a rigid skeleton will find more applications in asymmetric hydrogenation and other asymmetric transformations.

18.
Phys Rev Lett ; 132(18): 184003, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38759176

RESUMO

Controlling active transport of water through membrane channels is essential for advanced nanofluidic devices. Despite advancements in water nanopump design using techniques like short-range invasion and subnanometer-level control, challenges remain facilely and remotely realizing massive waters active transport. Herein, using molecular dynamic simulations, we propose an ultrahigh-flux nanopump, powered by frequency-specific terahertz stimulation, capable of unidirectionally transporting massive water through asymmetric-wettability membrane channels at room temperature without any external pressure. The key physics behind this terahertz-powered water nanopump is revealed to be the energy flow resulting from the asymmetric optical absorption of water.

19.
Chemistry ; 30(41): e202401389, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38779789

RESUMO

Transition metal-catalyzed epoxidation of carbonyl compounds through carbonyl ylides represents a highly effective method for synthesizing a diverse range of valuable epoxides. This review offers an in-depth overview of the latest developments in inter- and intramolecular epoxidation reactions involving metal carbenes and carbonyl compounds, encompassing both racemic to enantioselective transformations. These catalytic epoxidations are reviewed by highlighting their product selectivity, diversity and applicability, and the related mechanistic rationale is showcased where possible.

20.
Langmuir ; 40(39): 20576-20583, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39305250

RESUMO

We have systematically investigated and found surprising superior catalytic activities of very short DNAzymes for copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), both in solution and on surface. As a key reaction of the "click chemistry" class, CuAAC is a highly efficient and specific covalent conjugation tool with demonstrated applications in organic synthesis, bioconjugation, and surface functionalization; however, it requires the presence of the Cu(I) catalyst, which is an unstable species in aqueous solutions. We show here that one ultrashort, 14-nucleotide-truncated fragment of an earlier in vitro selected DNAzyme (CLICK-17) shows a striking and superior catalytic activity toward the in trans CuAAC reaction in solution and on surface in the presence of either Cu(I) or Cu(II), at significantly lowered concentrations. These results obviate the need for long-sequence DNAzymes, selected out of the homogeneous solution phase, for application in complex surface environments.


Assuntos
Azidas , Química Click , Cobre , DNA Catalítico , Soluções , Propriedades de Superfície , DNA Catalítico/química , DNA Catalítico/metabolismo , Cobre/química , Catálise , Azidas/química , Alcinos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA