Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36614467

RESUMO

High-speed trains have a large amount of ancillary equipment, which is suspended from the underside of the train by means of a suspension structure. Due to the large mass of the ancillary equipment, the suspension structure is subjected to various loads during train operation and there is a risk of fatigue failure. In this paper, the stress distribution at the suspension point and the lo-cation of the maximum stress point under load are investigated in detail based on actual test loads at the suspension point and finite element simulation analysis. In order to further investigate the fracture failure of the suspension points, experimental studies were carried out. Firstly, static strength tests were carried out to obtain the load-displacement curves of the structural members and to determine the fracture strength of the structure based on the displacement sensors, and secondly, fatigue tests at different stress levels were carried out to obtain the load-life curves of the structural members and to investigate the probabilistic load-life curves at different reliability levels. The test results show that the structural component has a high fracture strength of 65kN, while the conditional fatigue strength is relatively low, corresponding to a load level of 12.5kN at a median life of 106 cycles. The above research work provides the necessary basis for the design, optimization and reliability assessment of the suspension structures of high-speed trains.

2.
Sci Rep ; 12(1): 20484, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443429

RESUMO

Industrial robots are widely used in various industrial fields, such as handling and welding, due to their good repeat positioning accuracy. The motion error determines the absolute accuracy. For robot design, dimensional parameter errors and drive parameter errors, a mathematical model of a kinematic exponential product with error screws was proposed. The influence of different rod lengths and transmission errors on the accuracy of the end motion was analysed. A composite analysis method based on screw theory and vector method is proposed for the spatial deflection error of robot rotating joints with clearance. By using screw theory, a mathematical error model of the axial movement and spatial deflection of the joint gap was established. A mathematical model of joint space radial movement was established by using the three-dimensional vector method. Through numerical simulation, the position distribution law of the random error of the robot terminal in the workspace and the distribution of the plane projection density were obtained. By solving the attitude matrix, the distribution of each Euler angle error was obtained. A simulation test was carried out to verify the model's correctness. The calculation showed that the method is simple and correct, and the obtained error distribution characteristics are of great significance to improving robotic kinematic calibration accuracy and optimising the spatial position error distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA