Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 15(7): 4599-604, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26029960

RESUMO

Designing "ideal electrodes" that simultaneously guarantee low mechanical damping and electrical loss as well as high electromechanical coupling in ultralow-volume piezoelectric nanomechanical structures can be considered to be a key challenge in the NEMS field. We show that mechanically transferred graphene, floating at van der Waals proximity, closely mimics "ideal electrodes" for ultrahigh frequency (0.2 GHz < f0 < 2.6 GHz) piezoelectric nanoelectromechanical resonators with negligible mechanical mass and interfacial strain and perfect radio frequency electric field confinement. These unique attributes enable graphene-electrode-based piezoelectric nanoelectromechanical resonators to operate at their theoretically "unloaded" frequency-limits with significantly improved electromechanical performance compared to metal-electrode counterparts, despite their reduced volumes. This represents a spectacular trend inversion in the scaling of piezoelectric electromechanical resonators, opening up new possibilities for the implementation of nanoelectromechanical systems with unprecedented performance.

2.
J Phys Ther Sci ; 27(11): 3541-4, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26696734

RESUMO

[Purpose] The purpose of the study was to design and implement a multichannel dynamic functional electrical stimulation system and investigate acute effects of functional electrical stimulation of the tibialis anterior and rectus femoris on ankle and knee sagittal-plane kinematics and related muscle forces of hemiplegic gait. [Subjects and Methods] A multichannel dynamic electrical stimulation system was developed with 8-channel low frequency current generators. Eight male hemiplegic patients were trained for 4 weeks with electric stimulation of the tibia anterior and rectus femoris muscles during walking, which was coupled with active contraction. Kinematic data were collected, and muscle forces of the tibialis anterior and rectus femoris of the affected limbs were analyzed using a musculoskelatal modeling approach before and after training. A paired sample t-test was used to detect the differences between before and after training. [Results] The step length of the affected limb significantly increased after the stimulation was applied. The maximum dorsiflexion angle and maximum knee flexion angle of the affected limb were both increased significantly during stimulation. The maximum muscle forces of both the tibia anterior and rectus femoris increased significantly during stimulation compared with before functional electrical stimulation was applied. [Conclusion] This study established a functional electrical stimulation strategy based on hemiplegic gait analysis and musculoskeletal modeling. The multichannel functional electrical stimulation system successfully corrected foot drop and altered circumduction hemiplegic gait pattern.

3.
Sci Rep ; 12(1): 12603, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35871178

RESUMO

Agricultural sensors are powerful tools to optimize crop productivity while conserving natural resources. Here we report a crop water-stress detector based on a plasmonically-enhanced micromechanical photoswitch capable of detecting water content in leaves that is lower than a predetermined threshold without consuming electrical power when the leaf is healthy. The detection mechanism exploits the energy in a specific narrow-spectral band of solar radiation reflected off leaves that is strongly correlated to the water content in plants. This biosensor relies on a spectrally selective infrared plasmonic absorber and a thermally sensitive micro-cantilever to harvest the reflected solar energy and further produce a digitized wakeup-bit only when the monitored leaf is water-stressed. In particular, we demonstrate that the detector activates a commercial water pump when a soybean plant is water-stressed. The 10-year battery lifetime of the proposed detector pave the way for the development of high-granularity, maintenance-free sensor networks for large-scale smart-farms.


Assuntos
Desidratação , Água , Agricultura , Folhas de Planta , Plantas , Água/fisiologia
4.
Adv Mater Technol ; 6(9)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35558167

RESUMO

Miniaturized piezoelectric/magnetostrictive contour-mode resonators have been shown to be effective magnetometers by exploiting the ΔE effect. With dimensions of ~100-200 µm across and <1 µm thick, they offer high spatial resolution, portability, low power consumption, and low cost. However, a thorough understanding of the magnetic material behavior in these devices has been lacking, hindering performance optimization. This manuscript reports on the strong, nonlinear correlation observed between the frequency response of these sensors and the stress-induced curvature of the resonator plate. The resonance frequency shift caused by DC magnetic fields drops off rapidly with increasing curvature: about two orders of magnitude separate the highest and lowest frequency shift in otherwise identical devices. Similarly, an inverse correlation with the quality factor was found, suggesting a magnetic loss mechanism. The mechanical and magnetic properties are theoretically analyzed using magnetoelastic finite-element and magnetic domain-phase models. The resulting model fits the measurements well and is generally consistent with additional results from magneto-optical domain imaging. Thus, the origin of the observed behavior is identified and broader implications for the design of nano-magnetoelastic devices are derived. By fabricating a magnetoelectric nano-plate resonator with low curvature, a record-high DC magnetic field sensitivity of 5 Hz/nT is achieved.

5.
Nat Nanotechnol ; 12(10): 969-973, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28892101

RESUMO

State-of-the-art sensors use active electronics to detect and discriminate light, sound, vibration and other signals. They consume power constantly, even when there is no relevant data to be detected, which limits their lifetime and results in high costs of deployment and maintenance for unattended sensor networks. Here we propose a device concept that fundamentally breaks this paradigm-the sensors remain dormant with near-zero power consumption until awakened by a specific physical signature associated with an event of interest. In particular, we demonstrate infrared digitizing sensors that consist of plasmonically enhanced micromechanical photoswitches (PMPs) that selectively harvest the impinging electromagnetic energy in design-defined spectral bands of interest, and use it to create mechanically a conducting channel between two electrical contacts, without the need for any additional power source. Our zero-power digitizing sensor prototypes produce a digitized output bit (that is, a large and sharp off-to-on state transition with an on/off conductance ratio >1012 and subthreshold slope >9 dec nW-1) when exposed to infrared radiation in a specific narrow spectral band (∼900 nm bandwidth in the mid-infrared) with the intensity above a power threshold of only ∼500 nW, which is not achievable with any existing photoswitch technologies.

6.
Nat Commun ; 8(1): 296, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831042

RESUMO

State-of-the-art compact antennas rely on electromagnetic wave resonance, which leads to antenna sizes that are comparable to the electromagnetic wavelength. As a result, antennas typically have a size greater than one-tenth of the wavelength, and further miniaturization of antennas has been an open challenge for decades. Here we report on acoustically actuated nanomechanical magnetoelectric (ME) antennas with a suspended ferromagnetic/piezoelectric thin-film heterostructure. These ME antennas receive and transmit electromagnetic waves through the ME effect at their acoustic resonance frequencies. The bulk acoustic waves in ME antennas stimulate magnetization oscillations of the ferromagnetic thin film, which results in the radiation of electromagnetic waves. Vice versa, these antennas sense the magnetic fields of electromagnetic waves, giving a piezoelectric voltage output. The ME antennas (with sizes as small as one-thousandth of a wavelength) demonstrates 1-2 orders of magnitude miniaturization over state-of-the-art compact antennas without performance degradation. These ME antennas have potential implications for portable wireless communication systems.The miniaturization of antennas beyond a wavelength is limited by designs which rely on electromagnetic resonances. Here, Nan et al. have developed acoustically actuated antennas that couple the acoustic resonance of the antenna with the electromagnetic wave, reducing the antenna footprint by up to 100.

7.
Nat Commun ; 7: 11249, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27080018

RESUMO

Ultrathin plasmonic metasurfaces have proven their ability to control and manipulate light at unprecedented levels, leading to exciting optical functionalities and applications. Although to date metasurfaces have mainly been investigated from an electromagnetic perspective, their ultrathin nature may also provide novel and useful mechanical properties. Here we propose a thin piezoelectric plasmonic metasurface forming the resonant body of a nanomechanical resonator with simultaneously tailored optical and electromechanical properties. We experimentally demonstrate that it is possible to achieve high thermomechanical coupling between electromagnetic and mechanical resonances in a single ultrathin piezoelectric nanoplate. The combination of nanoplasmonic and piezoelectric resonances allows the proposed device to selectively detect long-wavelength infrared radiation with unprecedented electromechanical performance and thermal capabilities. These attributes lead to the demonstration of a fast, high-resolution, uncooled infrared detector with ∼80% absorption for an optimized spectral bandwidth centered around 8.8 µm.

8.
Microsyst Nanoeng ; 2: 16026, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-31057826

RESUMO

The use of micro-/nanoelectromechanical resonators for the room temperature detection of electromagnetic radiation at infrared frequencies has recently been investigated, showing thermal detection capabilities that could potentially outperform conventional microbolometers. The scaling of the device thickness in the nanometer range and the achievement of high infrared absorption in such a subwavelength thickness, without sacrificing the electromechanical performance, are the two key challenges for the implementation of fast, high-resolution micro-/nanoelectromechanical resonant infrared detectors. In this paper, we show that by using a virtually massless, high-electrical-conductivity, and transparent graphene electrode, floating at the van der Waals separation of a few angstroms from a piezoelectric aluminum nitride nanoplate, it is possible to implement ultrathin (460 nm) piezoelectric nanomechanical resonant structures with improved electromechanical performance (>50% improved frequency×quality factor) and infrared detection capabilities (>100× improved infrared absorptance) compared with metal-electrode counterparts, despite their reduced volumes. The intrinsic infrared absorption capabilities of a submicron thin graphene-aluminum nitride plate backed with a metal electrode are investigated for the first time and exploited for the first experimental demonstration of a piezoelectric nanoelectromechanical resonant thermal detector with enhanced infrared absorptance in a reduced volume. Moreover, the combination of electromagnetic and piezoelectric resonances provided by the same graphene-aluminum nitride-metal stack allows the proposed device to selectively detect short-wavelength infrared radiation (by tailoring the thickness of aluminum nitride) with unprecedented electromechanical performance and thermal capabilities. These attributes potentially lead to the development of uncooled infrared detectors suitable for the implementation of high performance, miniaturized and power-efficient multispectral infrared imaging systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA