Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Biol Rep ; 50(3): 1981-1991, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36536184

RESUMO

BACKGROUND: Fibroblast growth factors (FGFs) are key factors affecting diabetic wound healing. However, the FGF family's expression patterns in skin and wounds influenced by both diabetes and sex are still unknown. METHODS AND RESULTS: In this study, normal and Streptozotocin (STZ)-induced type 1 diabetic C57BL/6J male and female mice were used to study the FGF family's expression in non-wound skin and wounds. We found that the expression patterns of Fgfs were affected by sex in both normal and diabetic animals during wound healing. In normal control mice, sex difference had a limited effect on basal skin Fgf expressions. However, it significantly influenced Fgf expressions in wounds. Type 1 diabetes reduced basal and wound-induced skin Fgf expressions. Female mice had far lower wound-induced skin Fgf expressions in diabetic mice. In addition, sex differently influenced Fibroblast growth factors receptor (Fgfr) expression patterns of non-wound skin and wounds in both normal and diabetic mice. Moreover, female mice had a lower relative level of Fibronectin leucine-rich repeat transmembrane protein 2 (FLRT2) - a FGFR activation marker gene - in wound and blood plasma. Correspondingly, the wound areas of female animals were larger than that of male animals in the early stage of wound healing (less than 3-day injury). CONCLUSION: Our research shows that the FGF family have different expression patterns in normal and diabetic wound healing in mice of different sex. Additionally, we also provide the signatures of individual FGFs in diabetic wound healing, which deserve further investigation.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Camundongos , Feminino , Masculino , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Estreptozocina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Caracteres Sexuais , Camundongos Endogâmicos C57BL , Pele/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Glicoproteínas de Membrana/metabolismo
2.
J Asian Nat Prod Res ; 23(11): 1068-1076, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33565352

RESUMO

Polycyclic polyprenylated acylphloroglucinols (PPAPs) were mainly obtained from the plants of Hypericum genus of Guttiferae family, and possessed intriguing chemical structures and appealing biological activities. Two new PPAPs derivatives, hyperacmosin C (1) and hyperacmosin D (2) were isolated from H. acmosepalum. Their structures were established by NMR, HREIMS, and experimental electronic circular dichroism spectra. Besides, compound 1 showed significant hepatoprotective activity at 10 µM against paracetamol-induced HepG2 cell damage and compound 2 could moderately increase the relative glucose consumption.


Assuntos
Hypericum , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Floroglucinol/farmacologia
3.
Biochem Biophys Res Commun ; 514(2): 407-414, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31056256

RESUMO

Skeletal muscle secretes myokines, which are involved in metabolism and muscle function regulation. The role of fasting on myokine expression in skeletal muscle is largely unknown. In this study, we used gastrocnemius skeletal muscle RNA sequencing data from fasting male mice in the Gene Expression Omnibus (GEO) database. Adopted male and female C57BL/6J mice that fasted for 24 h were included to examine the effect of fasting on myokine expression in slow-twitch soleus and fast-twitch tiabialis anterior (TA) skeletal muscle. We found that fasting significantly affected many myokines in muscle. Fasting reduced Fndc5 and Igf1 gene expression in soleus and TA muscles in both male and female mice without muscle phenotype or gender differences, but Il6, Mstn and Erfe expression was influenced by fasting with fibre type- and gender-dependent effects. Fasting also induced muscle atrophy marker genes Murf1 and Fbxo32 and reduced myogenesis factor Mef2 expression without muscle fibre or gender differences. We further found that the expression of transcription factors Pgc1α, Pparα, Pparγ and Pparδ had muscle fibre type-dependent effects, and the expression of Pgc1α and Pparα had gender-dependent effects. The sophisticated expression pattern of myokines would partially explain the complicated cross-talk between skeletal muscle and other organs in different genders and muscles phenotypes, and it is worth further investigation.


Assuntos
Citocinas/genética , Jejum/fisiologia , Regulação da Expressão Gênica , Músculo Esquelético/metabolismo , Caracteres Sexuais , Animais , Citocinas/biossíntese , Feminino , Fibronectinas/genética , Fator de Crescimento Insulin-Like I/genética , Interleucina-6/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/classificação , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Miostatina/genética , Fenótipo , Fatores de Transcrição/genética
4.
Bioorg Chem ; 82: 1-5, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30267969

RESUMO

Five novel and rare cadinane-type sesquiterpene glycosides, cornucadinoside A-E (1-5) were isolated from water extract of the fruit of Cornus officinalis Sieb. et Zuuc.. The new chemical structures, together with their absolute configurations, were elucidated on the basis of extensive spectroscopic analysis, including a comparison of their experimental and calculated electronic circular dichroism (ECD) spectra. Their structures, which possess a naphthalene skeleton, are the first report on the occurrence of cadinane sesquiterpene glycosides in Cornus. Additionally, all the compounds exhibited marked α-glucosidase inhibitory activity except for 3in vitro.


Assuntos
Cornus/química , Frutas/química , Inibidores de Glicosídeo Hidrolases/química , Glicosídeos/química , Sesquiterpenos/química , Dicroísmo Circular , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Glicosídeos/isolamento & purificação , Naftalenos/química , Naftalenos/isolamento & purificação , Sesquiterpenos/isolamento & purificação
5.
Biomed Pharmacother ; 176: 116760, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788595

RESUMO

With the increasing prevalence of metabolic disorders, hyperglycemia has become a common risk factor that endangers people's lives and the need for new drug solutions is burgeoning. Trans-2, 4-dimethoxystilbene (TDMS), a synthetic stilbene, has been found as a novel hypoglycemic small molecule from glucose consumption test. Normal C57BL/6 J mice, mouse models of type 1 diabetes mellitus and diet-induced obesity subjected to TDMS gavage were found with lower glycemic levels and better glycemic control. TDMS significantly improved the symptoms of polydipsia and wasting in type 1 diabetic mice, and could rise their body temperature at the same time. It was found that TDMS could promote the expression of key genes of glucose metabolism in HepG2, as do in TDMS-treated liver, while it could improve the intestinal flora and relieve intestinal metabolic dysbiosis in hyperglycemic models, which in turn affected its function in the liver, forming the gut-liver axis. We further fished PPARγ by virtual screening that could be promoted by TDMS both in-vitro and in-vivo, which was regulated by upstream signaling of AMPKα phosphorylation. As a novel hypoglycemic small molecule, TDMS was proven to be promising with its glycemic improvements and amelioration of diabetes symptoms. It promoted glucose absorption and utilization by the liver and improved the intestinal flora of diabetic mice. Therefore, TDMS is expected to become a new hypoglycemic drug that acts through gut-liver axis via AMPKα-PPARγ signaling pathway in improving glycemic metabolism, bringing new hope to patients with diabetes and glucose metabolism disorders.


Assuntos
Proteínas Quinases Ativadas por AMP , Microbioma Gastrointestinal , Hipoglicemiantes , Fígado , Camundongos Endogâmicos C57BL , PPAR gama , Transdução de Sinais , Estilbenos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Humanos , PPAR gama/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos , Masculino , Estilbenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células Hep G2 , Diabetes Mellitus Experimental/tratamento farmacológico , Glicemia/efeitos dos fármacos , Glicemia/metabolismo
6.
Am J Cancer Res ; 13(9): 4057-4072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818062

RESUMO

Osteosarcoma (OS) is the most frequent primary bone cancer, which is mainly suffered by children and young adults. While the current surgical treatment combined with chemotherapy is effective for the early stage of OS, advanced OS preferentially metastasizes to the lung and is difficult to treat. Here, we examined the efficacy of ten anti-OS peptide candidates from a trypsin-digested conditioned medium that was derived from the secretome of induced tumor-suppressing cells (iTSCs). Using OS cell lines, the antitumor capabilities of the peptide candidates were evaluated by assaying the alterations in metabolic activities, proliferation, motility, and invasion of OS cells. Among ten candidates, peptide P05 (ADDGRPFPQVIK), a fragment of aldolase A (ALDOA), presented the most potent OS-suppressing capabilities. Its efficacy was additive with standard-of-care chemotherapeutic agents such as cisplatin and doxorubicin, and it downregulated oncoproteins such as epidermal growth factor receptor (EGFR), Snail, and Src in OS cells. Interestingly, P05 did not present inhibitory effects on non-OS skeletal cells such as mesenchymal stem cells and osteoblast cells. Collectively, this study demonstrated that iTSC-derived secretomes may provide a source for identifying anticancer peptides, and P05 may warrant further evaluations for the treatment of OS.

7.
J Asian Nat Prod Res ; 13(10): 884-94, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21972802

RESUMO

Salvianolic acid A (SalA) is one of the main active ingredients of Salvia miltiorrhizae. The objective of this study was to evaluate the effect of SalA on the diabetic vascular endothelial dysfunction (VED). The rats were given a high-fat and high-sucrose diet for 1 month followed by intraperitoneal injection of streptozotocin (30 mg/kg). The diabetic rats were treated with SalA (1 mg/kg, 90% purity) orally for 10 weeks after modeling, and were given a high-fat diet. Contractile and relaxant responses of aorta rings as well as the serum indications were measured. Our results indicated that SalA treatment decreased the level of serum Von Willebrand factor and ameliorated acetylcholine-induced relaxation and KCl-induced contraction in aorta rings of the diabetic rats. SalA treatment also reduced the serum malondialdehyde, the content of aortic advanced glycation end products (AGEs), and the nitric oxide synthase (NOS) activity as well as the expression of endothelial NOS protein in the rat aorta. Exposure of EA.hy926 cells to AGEs decreased the cell viability and changed the cell morphology, whereas SalA had protective effect on AGEs-induced cellular vitality. Our data suggested that SalA could protect against vascular VED in diabetes, which might attribute to its suppressive effect on oxidative stress and AGEs-induced endothelial dysfunction.


Assuntos
Ácidos Cafeicos/farmacologia , Diabetes Mellitus Experimental/metabolismo , Lactatos/farmacologia , Administração Oral , Animais , Glicemia/análise , Ácidos Cafeicos/química , Ácidos Cafeicos/isolamento & purificação , Diabetes Mellitus Experimental/tratamento farmacológico , Dieta , Dieta Hiperlipídica/efeitos adversos , Endotélio Vascular/efeitos dos fármacos , Produtos Finais de Glicação Avançada/metabolismo , Lactatos/química , Lactatos/isolamento & purificação , Masculino , Estrutura Molecular , Óxido Nítrico Sintase Tipo III/análise , Óxido Nítrico Sintase Tipo III/sangue , Ratos , Ratos Wistar , Salvia miltiorrhiza/química , Triglicerídeos/sangue
8.
Yao Xue Xue Bao ; 46(6): 642-9, 2011 Jun.
Artigo em Zh | MEDLINE | ID: mdl-21882523

RESUMO

There are growing evidences that pinocembrin has better neuroprotective effect. In the present study, the effect of pinocembrin on mitochondrial respiratory function was evaluated in global brain ischemia/ reperfusion (4-vessel occlusion, 4-VO) rats. The results showed that pinocembrin improved the respiratory activity of 4-VO brain mitochondria, through increasing ADP/O, state 3 respiration state (V3), respiration control rate index (RCI) and oxidative phosphorylation rate (OPR). And then, the effect of pinocembrin on brain mitochondria was verified in vitro. The results showed that pinocembrin increased ADP/O, state 3 respiration state, respiration control rate index, oxidative phosphorylation rate in NADH/FADH2 dependent respiratory chain and decreased state 4 respiration state (V4) in NADH dependent respiratory chain. Pinocembrin improved ATP content in brain mitochondria in vitro and in SH-SY5Y cells.


Assuntos
Trifosfato de Adenosina/biossíntese , Isquemia Encefálica/fisiopatologia , Respiração Celular/efeitos dos fármacos , Flavanonas/farmacologia , Mitocôndrias/fisiologia , Difosfato de Adenosina/metabolismo , Animais , Isquemia Encefálica/patologia , Linhagem Celular Tumoral , Hipocampo/patologia , Masculino , Mitocôndrias/efeitos dos fármacos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Oxigênio/metabolismo , Ratos , Ratos Sprague-Dawley
9.
Yao Xue Xue Bao ; 45(6): 801-6, 2010 Jun.
Artigo em Zh | MEDLINE | ID: mdl-20939194

RESUMO

The aim of this study is to investigate the effects of the metformin on the formation of hepatic fibrosis in type 2 diabetic rats and discuss its mechanism of liver-protecting activity. After SD rats were fed with high-fat and high-sucrose diet for four weeks, low-dose streptozotocin (STZ) was injected intraperitoneally to make the animal mode of type 2 diabetes. Then, all diabetic rats was fed with the high-fat diet and metformin (ig, 100 mg x kg(-1)) was given orally to metformin group for four months. After the last administration, fasting blood glucose was determined. The livers were removed to calculate the hepatic coefficient and to make HE and Picro acid-Sirius red staining, immunohistochemistry (alpha-SMA and TGFbeta1) and TUNEL staining in order to evaluate the effect of metformin on the hepatic fibrosis. The animal model of type 2 diabetes with hepatic fibrosis was successfully made. Metformin can significantly alleviate the lesions of hepatic steatosis and fibrosis, markedly reduce the expressions of alpha-SMA and TGFbeta1 in liver tissue of type 2 diabetic rats. However, TUNEL staining result suggested that metformin could not reduce apoptosis of hepatocytes. The results suggest that metformin can inhibit the formation of hepatic fibrosis in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Cirrose Hepática Experimental/tratamento farmacológico , Fígado/patologia , Metformina/farmacologia , Actinas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Feminino , Hepatócitos/patologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Fígado/metabolismo , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Masculino , Metformina/uso terapêutico , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Estreptozocina , Fator de Crescimento Transformador beta1/metabolismo
10.
Chin J Nat Med ; 18(11): 803-817, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33308601

RESUMO

Excess accumulation of white adipose tissue (WAT) causes obesity which is an imbalance between energy intake and energy expenditure. Obesity is a serious concern because it has been the leading causes of death worldwide, including diabetes, stroke, heart disease and cancer. Therefore, uncovering the mechanism of obesity and discovering anti-obesity drugs are crucial to prevent obesity and its complications. Browning, inducing white adipose tissue to brown or beige (brite) fat which is brown-like fat emerging in WAT, becomes an appealing therapeutic strategy for obesity and metabolic disorders. Due to lack of efficacy or intolerable side-effects, the clinical trials that promote brown adipose tissue (BAT) thermogenesis and browning of WAT have not been successful in humans. Obviously, more specific means still need to be developed to activate browning of white adipose tissue. In this review, we summarized seven kinds of natural products (alkaloids, flavonoids, terpenoids, long chain fatty acids, phenolic acids, else and extract) promoting white adipose tissue browning which can ameliorate the metabolic disorders, including obesity, dislipidemia, insulin resistance and diabetes. Since natural products are important drug sources and the browning property plays a significant role in not only obesity treatment but also in type 2 diabetes (T2DM) improvement, natural products of inducing browning may be an irreplaceable drug discovery orientation for obesity, diabetes and even other metabolic disorders.


Assuntos
Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Produtos Biológicos/farmacologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Descoberta de Drogas , Metabolismo Energético , Humanos , Obesidade/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Termogênese
11.
Chin J Nat Med ; 18(11): 818-826, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33308602

RESUMO

Hyperglycemia is the dominant phenotype of diabetes and the main contributor of diabetic complications. Puerarin is widely used in cardiovascular diseases and diabetic vascular complications. However, little is known about its direct effects on diabetes. The aim of our study is to investigate its antidiabetic effect in vivo and in vitro, and explore the underlying mechanism. We used type I diabetic mice induced by streptozotocin to observe the effects of puerarin on glucose metabolism. In addition, oxidative stress and hepatic mitochondrial respiratory activity were evaluated in type I diabetic mice. In vitro, glucose consumption in HepG2 cells was assayed along with the qPCR detection of glucogenesis genes expression. Moreover, ATP production was examined and phosphorylation of AMPK was determined using Western blot. Finally, the molecular docking was performed to predict the potential interaction of puerarin with AMPK utilizing program LibDock of Discovery Studio 2018 software. The results showed that puerarin improved HepG2 glucose consumption and upregulated the glucogenesis related genes expression. Also, puerarin lowered fasting and fed blood glucose with improvement of glucose tolerance in type I diabetic mice. Further mechanism investigation showed that puerarin suppressed oxidative stress and improved hepatic mitochondrial respiratory function with enhancing ATP production and activating phosphorylation of AMPK. Docking study showed that puerarin interacted with AMPK activate site and enhancing phosphorylation. Taken together, these findings indicated that puerarin exhibited the hypoglycemic effect through attenuating oxidative stress and improving mitochondrial function via AMPK regulation, which may serve as a potential therapeutic option for diabetes treatment.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Hipoglicemiantes/farmacologia , Isoflavonas/farmacologia , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Glicemia/metabolismo , Células Hep G2 , Humanos , Hiperglicemia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Fosforilação
12.
Biol Sex Differ ; 11(1): 9, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156311

RESUMO

Fibroblast growth factors (FGFs) belong to a large family comprising 22 FGF polypeptides that are widely expressed in tissues. Most of the FGFs can be secreted and involved in the regulation of skeletal muscle function and structure. However, the role of fasting on FGF expression pattern in skeletal muscles remains unknown. In this study, we combined bioinformatics analysis and in vivo studies to explore the effect of 24-h fasting on the expression of Fgfs in slow-twitch soleus and fast-twitch tibialis anterior (TA) muscle from male and female C57BL/6 mice. We found that fasting significantly affected the expression of many Fgfs in mouse skeletal muscle. Furthermore, skeletal muscle fibre type and sex also influenced Fgf expression and response to fasting. We observed that in both male and female mice fasting reduced Fgf6 and Fgf11 in the TA muscle rather than the soleus. Moreover, fasting reduced Fgf8 expression in the soleus and TA muscles in female mice rather than in male mice. Fasting also increased Fgf21 expression in female soleus muscle and female and male plasma. Fasting reduced Fgf2 and Fgf18 expression levels without fibre-type and sex-dependent effects in mice. We further found that fasting decreased the expression of an FGF activation marker gene-Flrt2 in the TA muscle but not in the soleus muscle in both male and female mice. This study revealed the expression profile of Fgfs in different skeletal muscle fibre types and different sexes and provides clues to the interaction between the skeletal muscle and other organs, which deserves future investigations.


Assuntos
Jejum/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Caracteres Sexuais , Animais , Biologia Computacional , Feminino , Fatores de Crescimento de Fibroblastos/sangue , Masculino , Camundongos Endogâmicos C57BL
13.
Eur J Pharmacol ; 859: 172523, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31279667

RESUMO

Many drugs with anti-diabetic effects regulate glucose consumption in peripheral tissues. Via cellular glucose consumption assays, we identified that coptisine, a main effective constituent from the plant Coptis chinensis, enhanced hepatic and skeletal muscle glucose consumption. We further explored its effects on glucose metabolism in diabetic animals to elucidate its mechanism of action. Our results showed that coptisine did not show cytotoxicity. Intragastric administration of coptisine for ten days in normal ICR mice markedly decreased fasting blood-glucose levels without significant effects on body weight. In alloxan-induced type 1 diabetic mice, intragastric administration of coptisine for 28 days decreased fasting and non-fasting blood-glucose levels as well. In type 2 diabetic KKAy mice, intragastric administration of coptisine for nine weeks improved glucose tolerance. It decreased fasting/non-fasting blood-glucose and fructosamine levels. Coptisine decreased low-density lipoprotein and total cholesterol levels, however, had no significant effect on triglyceride levels. Coptisine increased AMPK phosphorylation while decreasing Akt phosphorylation in HepG2 hepatic cells and C2C12 myotubes. Coptisine also reduced mitochondrial respiration in isolated and cellular mitochondria, suggesting that coptisine lowered cellular energy levels. In particularly, coptisine administration (10-6 M) decreased the mitochondrial oxygen consumption rate (OCR) with a greater extracellular acidification rate (ECAR), resulting in an oxidative-to-glycolysis phosphorylation shifted for cellular energy generation. Our results demonstrate that coptisine acts as an enhancer of peripheral glucose consumption could improve glucose metabolism in diabetic animals. Coptisine may serve as a novel anti-diabetic agent and warrant further evaluation.


Assuntos
Berberina/análogos & derivados , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipoglicemiantes/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/patologia , Ativação Enzimática/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Células Hep G2 , Humanos , Hipoglicemiantes/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Ratos
14.
Artigo em Inglês | MEDLINE | ID: mdl-31379736

RESUMO

Urotensin-II (U-II) is an endogenous peptide agonist of a G protein-coupled receptor-urotensin receptor. There are many conflicting findings about the effects of U-II on blood glucose. This study aims to explore the effects of U-II on glucose metabolism in high-fat diet-fed mice. Male C57BL/6J mice were fed a 45% high-fat diet or chow diet and were administered U-II intraperitoneally for in vivo study. Skeletal muscle C2C12 cells were used to determine the effects of U-II on glucose and fatty acid metabolism as well as mitochondrial respiratory function. In this study, we found that chronic U-II administration (more than 7 days) ameliorated glucose tolerance in high-fat diet-fed mice. In addition, chronic U-II administration reduced the weight gain and the adipose tissue weight, including visceral, subcutaneous, and brown adipose tissue, without a significant change in blood lipid levels. These were accompanied by the increased mRNA expression of the mitochondrial thermogenesis gene Ucp3 in skeletal muscle. Furthermore, in vitro treatment with U-II directly enhanced glucose and free fatty acid consumption in C2C12 cells with increased aerobic respiration. Taken together, chronic U-II stimulation leads to improvement on glucose tolerance in high-fat diet-fed mice and this effect maybe closely related to the reduction in adipose tissue weights and enhancement on energy substrate utilization in skeletal muscle.

17.
Eur J Pharmacol ; 665(1-3): 40-6, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21510928

RESUMO

Salvianolic acid A (SalA) is the main efficacious, water-soluble constituent of Salvia miltiorrhiza Bunge. This study evaluated the effects of SalA on plantar microcirculation and peripheral nerve dysfunction in streptozotocin (STZ )-induced type 2 diabetic rats. The rats were given a high-fat and high-sucrose diet for a month followed by intraperitoneal injection of STZ (30 mg/kg). Oral administration of SalA (1 and 3mg/kg, respectively) was performed daily for 10 weeks after modeling. Diabetic rats were given a high-fat diet, while age-matched healthy rats were given a standard chow. Plantar microcirculation was measured by Laser Doppler flowmetry, and peripheral nerve function was measured with regard to pain withdrawal latency and motor nerve conduction velocity. The results show that the plantar blood perfusion and vasodilation reactivities decreased significantly, and latency of pain withdrawal and motor nerve conduction velocity rose in diabetic rats compared with the normal control group. SalA increased peripheral blood perfusion and vascular activities; improved peripheral nerve function; and decreased AGEs levels, vascular eNOS expression, and blood glucose, lipid, vWF and malondialdehyde levels in diabetic rats. The beneficial effects of SalA on plantar microcirculation and peripheral nerve function in diabetic rats might be attributed to improvements in lipid and glucose metabolism in diabetic rats, the inhibition of AGEs formation and the development of oxidative stress-related nervous and vascular damage. Based on these findings, we proposed that therapeutic use of SalA to prevent the development of diabetic foot problems.


Assuntos
Ácidos Cafeicos/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Pé/irrigação sanguínea , Lactatos/farmacologia , Microcirculação/efeitos dos fármacos , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/fisiopatologia , Animais , Aorta/efeitos dos fármacos , Aorta/enzimologia , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Ácidos Cafeicos/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Pé Diabético/tratamento farmacológico , Pé Diabético/metabolismo , Pé Diabético/fisiopatologia , Produtos Finais de Glicação Avançada/metabolismo , Hiperemia/complicações , Hiperemia/tratamento farmacológico , Lactatos/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Dor/complicações , Dor/fisiopatologia , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Taxa de Sobrevida , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA