Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 32(27)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33765671

RESUMO

Lithium-sulfur batteries (LSBs) have gained intense research enthusiasm due to their high energy density. Nevertheless, the 'shuttle effect' of soluble polysulfide (a discharge product) reduces their cycling stability and capacity, thus restricting their practical application. To tackle this challenging issue, we herein report a sulfonated covalent organic framework modified separator (SCOF-Celgard) that alleviates the shuttling of polysulfide anions and accelerates the migration of Li+ions. Specifically, the negatively charged sulfonate can inhibit the same charged polysulfide anion through electrostatic repulsion, thereby improving the cycle stability of the battery and preventing the Li-anode from being corroded. Meanwhile, the sulfonate groups may facilitate the positively charged lithium ions to pass through the separator. Consequently, the battery assembled with the SCOF-Celgard separator exhibits an 81.1% capacity retention after 120 cycles at 0.5 C, which is far superior to that (55.7%) of the battery with a Celgard separator. It has a low capacity degradation of 0.067% per cycle after 600 cycles at 1 C, and a high discharge capacity (576 mAh g-1) even at 2 C. Our work proves that the modification of a separator with a SCOF is a viable and effective route for enhancing the electrochemical performance of a LSB.

2.
ACS Appl Mater Interfaces ; 16(19): 24502-24513, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38706136

RESUMO

The severe shuttle effect of polysulfides (LiPSs) and the slow liquid-solid phase conversion are the main obstacles hindering the practical application of lithium-sulfur (Li-S) batteries. Separator modification with a high-activity catalyst can boost LiPSs conversion and suppress their shuttle effect. In this work, multi-heterostructured MXene/NiS2/Co3S4 with rich S-vacancies was constructed facilely with a hydrothermal and high-temperature annealing strategy for separator modification. The MXene sheet not only provides a physical barrier but also ensures a high conductivity and adsorption capacity of the catalyst; the dual active centers of NiS2 and Co3S4 catalyze LiPSs conversion. In addition, the vacancies and heterostructures can modulate the electronic structure of the catalyst, improve its intrinsic activity, and reduce the polysulfides reaction barrier, thus facilitating ion/electron transport and inhibiting the shuttle effect. Benefiting from these advantages, the Li-S battery with MXene/NiS2/Co3S4 modified separator exhibits exciting discharge capacities (1495.4 mAh g-1 at 0.1C and 549.0 mAh g-1 at 6C) and an excellent ultra-long cycle life (average capacity decay rate of 0.026% for 2000 cycles at 2C); at a high sulfur loading of 10.0 mg cm-2, the battery operates for nearly 80 cycles at 0.2C, giving a capacity retention rate of 75.76%. This work provides a high-activity catalyst for Li-S batteries.

3.
ChemSusChem ; 16(19): e202300507, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37314096

RESUMO

Due to the "shuttle effect" and low conversion kinetics of polysulfides, the cycle stability of lithium sulfur (Li-S) battery is unsatisfactory, which hinders its practical application. The Mott-Schottky heterostructures for Li-S batteries not only provide more catalytic/adsorption active sites, but also facilitate electrons transport by a built-in electric field, which are both beneficial for polysulfides conversion and long-term cycle stability. Here, MXene@WS2 heterostructure was constructed by in-situ hydrothermal growth for separator modification. In-depth ultraviolet photoelectron spectroscopy and ultraviolet visible diffuse reflectance spectroscopy analysis reveals that there is an energy band difference between MXene and WS2 , confirming the heterostructure nature of MXene@WS2 . DFT calculations indicate that the Mott-Schottky MXene@WS2 heterostructure can effectively promote electron transfer, improve the multi-step cathodic reaction kinetics, and further enhance polysulfides conversion. The built-in electric field of the heterostructure plays an important role in reducing the energy barrier of polysulfides conversion. Thermodynamic studies reveal the best stability of MXene@WS2 during polysulfides adsorption. As a result, the Li-S battery with MXene@WS2 modified separator exhibits high specific capacity (1613.7 mAh g-1 at 0.1 C) and excellent cycling stability (2000 cycles with 0.0286 % decay per cycle at 2 C). Even at a high sulfur loading of 6.3 mg cm-2 , the specific capacity could be retained by 60.0 % after 240 cycles at 0.3 C. This work provides deep structural and thermodynamic insights into MXene@WS2 heterostructure and its promising prospect of application in high performance Li-S batteries.

4.
ACS Appl Mater Interfaces ; 15(12): 15377-15386, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36930751

RESUMO

Transition-metal compounds can be used as electrocatalysts to expedite polysulfide conversion effectively in lithium-sulfur batteries. However, insufficient conductivity and tedious preparation process still limit their practical applications. In this work, NiCo alloy nanoparticles embedded in hollow carbon spheres (NiCo@HCS) are fabricated via a facile, template-free strategy from the NiCo-metal-organic framework (MOF) precursor and used as electrocatalysts for separator modification. NiCo@HCS can not only improve the adsorption capacity of polysulfides by d-band deviation to the Fermi level but also reduce the energy barrier in the process of catalytic polysulfide conversion. Due to favorable three-dimensional (3-D) morphology, improved adsorption, and promoted kinetics of NiCo@HCS, the battery containing the NiCo@HCS-modified separator gives a starting capacity of 1377 mAh g-1 at 0.2C, which is retained by 72% over 500 charge/discharge operations at 1.0C current density. Moreover, the battery's start capacity reaches 1180 mAh g-1 (5.9 mAh cm-2) with a high sulfur content of 5.0 mg cm-1 at 0.2C.

5.
ACS Appl Mater Interfaces ; 15(4): 5253-5264, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36683487

RESUMO

To overcome the shuttling effect and sluggish conversion kinetics of polysulfides, a large number of catalysts have been designed for lithium-sulfur (Li-S) batteries. Herein, a Mott-Schottky junction catalyst composed of Co nanoparticles and Ni2P was designed to improve polysulfide kinetics. Our investigations reveal the rearrangement of charges at the Schottky junction interface and the construction of the built-in electric field are crucial for lowering the activation energy of the dissolved Li2Sn reduction and Li2S nucleation reaction. Furthermore, a series of experimental and electrochemical tests were performed to demonstrate that the Schottky catalytic effect enhanced the synergistic catalytic effect. With a Ni2P-Co@CNT catalyst, the battery exhibits an initial specific capacity of 874 mAh g-1 at a rate of 4.0 C, and the decay rate per cycle is 0.049% in 700 cycles. Meanwhile, the battery shows 0.118% decay rate per cycle at 0.5 C in 100 cycles at a high sulfur loading of 10 mg cm-2. The Schottky heterojunction structure proposed here has been shown to have a good catalytic effect on the reduction of Li2Sn and nucleation of Li2S, which provides a profound guidance for efficient and rational catalyst design.

6.
ACS Appl Mater Interfaces ; 14(37): 42123-42133, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36075102

RESUMO

Efficient and durable electrocatalysts are important for polysulfide conversion in high-performance Li-S batteries. Herein, we report a sacrificial template strategy to synthesize a sulfur/nitrogen-codoped carbon-supported manganese (Mn) single-atom catalyst (Mn/SNC). The synthesis is enabled by fabricating a novel precursor, i.e., cadmium sulfide (CdS) wrapped with Mn ion-impregnated polyporrole (CdS@Mn-PPy), and subsequent pyrolysis. During pyrolysis, the CdS template is decomposed into Cd and S, PPy-derived carbon is doped with N and S, and Mn ions are reduced to Mn atoms, forming Mn-N active sites. The evaporation of Cd atoms/clusters creates abundant pores in the carbon substrate to expose the active sites and facilitate ion transport, and S atoms can form edge C-S-C bonds to improve the activity of Mn-N sites. Benefiting from the above advantages, the Mn/SNC catalyst markedly enhances the performance of Li-S batteries, delivering an initial capacity of 1563.7 mAh g-1 at 0.1C, a capacity decay of only 0.037% per cycle after 1600 cycles at 2C; a capacity of 1045.1 mAh g-1 at a high sulfur loading of 7.44 mg cm-2 at 0.2C, and a capacity retention of 73.1% after 180 cycles. This work provides a strategy that may benefit further the rational design and development of single-atom catalysts for application in renewable energy.

7.
ACS Nano ; 15(12): 20478-20488, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34860017

RESUMO

In order to overcome the shuttling effect of soluble polysulfides in lithium-sulfur (Li-S) batteries, we have designed and synthesized a creative MoS2-MoO3/carbon shell (MoS2-MoO3/CS) composite by a H2O2-enabled oxidizing process under mild conditions, which is further used for separator modification. The MoS2-MoO3 heterostructures can conform to the CS morphology, forming two-dimensional nanosheets, and thus shorten the transport path of lithium ion and electrons. Based on our theoretical calculations and experiments, the heterostructures show strong surface affinity toward polysulfides and good catalytic activity to accelerate polysulfide conversion. Benefiting from the above merits, the Li-S battery with a MoS2-MoO3/CS modified separator exhibits good electrochemical performance: it delivers a high discharge capacity of 1531 mAh g-1 at 0.2 C; the initial capacity can be maintained by 92% after 600 cycles at 1 C, and the discharge capacity decay rate is only 0.0135% per cycle. Moreover, the MoS2-MoO3/CS battery still achieves good cycling stability with 78% capacity retention after 100 cycles at 0.2 C with a high sulfur loading of 5.9 mg cm-2. This work offers a facile design to construct the MoS2-MoO3 heterostructures for high-performance Li-S batteries, and may also improve one's understanding on the heterostructure contribution during polysulfide adsorption and conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA