Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 180: 110482, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39059289

RESUMO

ß-nicotinamide mononucleotide (ß-NMN) is a key precursor of nicotinamide adenine dinucleotide, and becomes attractive in the nutrition and health care fields, but its enzymatic synthesis is expensive. In this study, a six-enzyme cascade catalytic system was constructed to produce ß-NMN. Using D-ribose and nicotinamide as substrates, the ß-NMN yield reached 97.5 % catalyzed by purified enzymes. Then, after knocking out the genes encoding proteins that consume ß-NMN in E. coli BL21(DE3), the similar ß-NMN yield, 97.2 %, using the crude enzymes could be also obtained. After that, ß-NMN synthesis was performed under increased substrate concentration, and 'modular' crude enzymes cascade catalytic reaction system was proposed to reduce the inhibition of polyphosphate on ribose-phosphate diphosphokinase activity, and the ß-NMN yield reached 78.4 % at 10 mM D-ribose, which is 1.82 times of that in 'one-pot' reaction and represents the highest ß-NMN preparation level with phosphoribosylpyrophosphate as the core reported till now.

2.
Front Chem ; 11: 1333475, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156020

RESUMO

Capturing and separating carbon dioxide, particularly using porous carbon adsorption separation technology, has received considerable research attention due to its advantages such as low cost and ease of regeneration. In this study, we successfully developed a one-step carbonization activation method using freeze-thaw pre-mix treatment to prepare high-nitrogen-content microporous nitrogen-doped carbon materials. These materials hold promise for capturing and separating CO2 from complex gas mixtures, such as biogas. The nitrogen content of the prepared carbon adsorbents reaches as high as 13.08 wt%, and they exhibit excellent CO2 adsorption performance under standard conditions (1 bar, 273 K/298 K), achieving 6.97 mmol/g and 3.77 mmol/g, respectively. Furthermore, according to Ideal Adsorption Solution Theory (IAST) analysis, these materials demonstrate material selectivity for CO2/CH4 (10 v:90 v) and CO2/CH4 (50 v:50 v) of 33.3 and 21.8, respectively, at 1 bar and 298 K. This study provides a promising CO2 adsorption and separation adsorbent that can be used in the efficient purification process for carbon dioxide, potentially reducing greenhouse gas emissions in industrial and energy production, thus offering robust support for addressing climate change and achieving more environmentally friendly energy production and carbon capture goals.

3.
Zhongguo Zhong Yao Za Zhi ; 32(18): 1848-50, 2007 Sep.
Artigo em Zh | MEDLINE | ID: mdl-18051886

RESUMO

OBJECTIVE: To study the effect of fluridone concentration, stimulating period, temperature and salt on the seed germination of three species of Cistanche. METHOD: The seeds were cultured in Petri dish, and the germination percentage was counted. RESULT: The highest germination percentage was observed in Cistanche tubulosa, C. deserticola, C. sala seeds pre-treated by 0.1 mg x L(-1) fluridone for 24-29 h. The optimal temperature for the seeds germination of three species of Cistanche was at 20-30 degrees C, and the seeds did not germinate at sub-or supraoptimal temperatures (5 and 35 degrees C). The salt tolerance of C. sala seeds was strong, and the critical value of NaCl concentration was 0.04 mol x L(-1). By contrast, C. tubulosa and C. deserticola seeds were more sensitive to the salt stress, the critical value of NaCl concentration was 0.02 mol x L(-1). CONCLUSION: The optimal germination condition and the method of testing germination percentage of three species of Cistanche seeds are as follow: the seeds are pre-treated by 0.1 mg x L(-1) fluridone for 24 h and then cultured at 20-30 degrees C in salt solution which concentration is lower than 0.02 mol x L(-1).


Assuntos
Cistanche/crescimento & desenvolvimento , Germinação/fisiologia , Plantas Medicinais/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Cistanche/classificação , Germinação/efeitos dos fármacos , Piridonas/farmacologia , Cloreto de Sódio/farmacologia , Especificidade da Espécie , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA