Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Small ; 19(7): e2206231, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36464643

RESUMO

The past decades have witnessed the rational design of novel functional nanomaterials and the potential to revolutionize many applications. With the increasing focus on electronic biological processes, novel photovoltaic nanomaterials are highly expectable for empowering new therapeutic strategies such as establishing a link between endogenous electric field (EEF) and electrotherapy. Compared to traditional invasive stimulation, the light-initiating strategy has the advantages of non-invasion, non-power supply, and precise controllability. Whereas, common photoactivated materials require short-wavelength light excitation accompanied by poor tissue penetration and biohazard. Herein, by the construction of p-n heterostructured Bi2 S3 /TiO2 /rGO (BTG) nanoparticles, broadener light absorption and higher light conversion than regular UV excitation are realized. Simultaneously, the photoelectric performance of BTG heterostructure, as well as the synergistic effect of Bi2 S3 morphology, are revealed. Besides, the rationally designed biomimetic hydrogel matrix consisting of collagen and hyaluronic acid provides appropriate bioactivity, interface adhesion, mechanical matching, and electron transfer. Therefore, the photovoltaic BTG-loaded matrix provides a platform of light-driven electrical stimulation, coupling the EEF to modulate the electrophysiological and regeneration microenvironment. The implementation of photoelectric stimulation holds broad prospects for non-drug therapy and electrical-related biological process modulation including osseointegration, nerve regeneration, electronic skin, and wound healing.


Assuntos
Terapia por Estimulação Elétrica , Grafite , Cicatrização , Grafite/química
2.
Biomacromolecules ; 23(3): 1030-1040, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35029368

RESUMO

Photoresponsive supramolecular hydrogels based on the host-guest interaction between cyclodextrin (CD) and azobenzene (Azo) are highly favored in "on-demand" biological applications. Nevertheless, most Azo/CD-based hydrogels are UV-responsive, exhibiting poor tissue penetrability and potential cytotoxicity; more importantly, the complete gel-sol transition under irradiation makes intelligent systems unstable. Here, we report a red-light-responsive semiconvertible hydrogel based on tetra-ortho-methoxy-substituted Azo (mAzo)- and CD-functionalized hyaluronic acid (HA). By integrating red-shifted-photoisomerized mAzo with HA, a biocompatible 625 nm-light-responsive polymeric guest with strengthened hydrogen bonding and weakened photoisomerization was synthesized. Upon alternating irradiation, mAzo-HA/CD-HA hydrogels obtained here exhibited reversible mechanical and structural dynamics, while avoiding complete gel-sol transition. This improved semiconvertibility remedies the lack of macroscopic resilience for dynamic system so as to endow supramolecular hydrogels with spatial-temporal mechanics, self-healing, and adhesion. Together with excellent cytocompatibility and manufacturability, these hydrogels show potential advantages in tissue engineering, especially for the regeneration of functional multi-tissue complex.


Assuntos
Ciclodextrinas , Hidrogéis , Ciclodextrinas/química , Ácido Hialurônico , Hidrogéis/química , Luz , Polímeros/química
3.
Appl Microbiol Biotechnol ; 104(23): 10059-10074, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33043389

RESUMO

Several quorum sensing systems occurring in Bacillus subtilis, e.g. Rap-Phr systems, were reported to interact with major regulatory proteins, such as ComA, DegU, and Spo0A, in order to regulate competence, sporulation, and synthesis of secondary metabolites. In this study, we characterized a novel Rap-Phr system, RapA4-PhrA4, in Bacillus velezensis NAU-B3. We found that the rapA4 and phrA4 genes were co-transcribed in NAU-B3. When rapA4 was expressed in the heterologous host Bacillus subtilis OKB105, surfactin production and sporulation were severely inhibited. However, when the phrA4 was co-expressed, the RapA4 activity was inhibited. The transcription of the surfactin synthetase srfA gene and sporulation-related genes were also regulated by the RapA4-PhrA4 system. In vitro results obtained from electrophoretic mobility shift assay (EMSA) proved that RapA4 inhibits ComA binding to the promoter of the srfA operon, and the PhrA4 pentapeptide acts as anti-activator of RapA4. We also found that the F24 residue plays a key role in RapA4 function. This study indicated that the novel RapA4-PhrA4 system regulates the surfactin synthesis and sporulation via interaction with ComA, thereby supporting the bacterium to compete and to survive in a hostile environment. KEY POINTS: •Bacillus velezensis NAU-B3 has a novel Rap-Phr quorum sensing system, which does not occur in model strains Bacillus subtilis 168 and B. velezensis FZB42. •RapA4-PhrA4 regulates surfactin production and sporulation. •RapA4-PhrA4 interacts with the ComA protein from ComP/ComA two-component system.


Assuntos
Regulação Bacteriana da Expressão Gênica , Esporos Bacterianos , Bacillus , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/metabolismo
4.
Biologicals ; 68: 112-121, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32928630

RESUMO

Influenza is an acute respiratory infection caused by the influenza virus, and vaccination against influenza is considered the best way to prevent the onset and spread. MDCK (Madin-Darby canine kidney) cells are typically used to isolate the influenza virus, however, their high tumorigenicity is the main controversy in the production of influenza vaccines. Here, MDCK-C09 and MDCK-C35 monoclonal cell lines were established, which were proven to be low in tumorigenicity. RNA-seq of MDCK-C09, MDCK-C35, and MDCK-W73 cells was performed to investigate the putative tumorigenicity mechanisms. Tumor-related molecular interaction analysis of the differentially expressed genes indicates that hub genes, such as CUL3 and EGFR, may play essential roles in tumorigenicity differences between MDCK-C (MDCK-C09 and MDCK-C35) and MDCK-W (MDCK-W73) cells. Moreover, the analysis of cell proliferation regulation-associated molecular interaction shows that downregulated JUN and MYC, for instance, mediate increased proliferation of these cells. The present study provides a new low-tumorigenic MDCK cell line and describes the potential molecular mechanism for the low tumorigenicity and high proliferation rate.


Assuntos
Transformação Celular Neoplásica/genética , Células Clonais/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes/genética , Animais , Linhagem Celular , Células Clonais/virologia , Cães , Células HeLa , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/metabolismo , Células Madin Darby de Rim Canino , Camundongos Nus , Cultura de Vírus/métodos
5.
Molecules ; 25(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187052

RESUMO

Sunflower (Helianthus annuus L.) contains active ingredients, such as flavonoids, alkaloids and tannins. Nevertheless, few studies have focused on essential oil from the receptacle of sunflower (SEO). In this work, we investigated the chemical composition and antimicrobial and antioxidant activities of SEO. The yield of SEO was about 0.42% (v/w) by hydrodistillation. A total of 68 volatile components of SEO were putatively identified by gas chromatography-mass spectrometry (GC-MS). The main constituents of SEO were α-pinene (26.00%), verbenone (7.40%), terpinolene (1.69%) and α-terpineol (1.27%). The minimum inhibitory concentration (MIC) of SEO against P. aeruginosa and S. aureus was 0.2 mg/mL. The MIC of SEO against S. cerevisiae was 3.2 mg/mL. The MIC of SEO against E. coli and Candida albicans was 6.4 mg/mL. The results showed that SEO had high antibacterial and antifungal activities. Three different analytical assays (DPPH, ABTS and iron ion reducing ability) were used to determine the antioxidant activities. The results showed that SEO had antioxidant activities. To summarize, the results in this study demonstrate the possibility for the development and application of SEO in potential natural preservatives and medicines due to its excellent antimicrobial and antioxidant activities.


Assuntos
Antibacterianos/química , Antioxidantes/química , Helianthus/química , Óleos Voláteis/química , Óleos de Plantas/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Monoterpenos Bicíclicos/química , Candida albicans/efeitos dos fármacos , Monoterpenos Cicloexânicos/química , Escherichia coli/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Radicais Livres , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
6.
Acta Biomater ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942188

RESUMO

Inspired by the strong light absorption of carbon nanotubes, we propose a fabrication approach involving one-dimensional TiO2/Bi2S3 QDs nanotubes (TBNTs) with visible red-light excitable photoelectric properties. By integrating the construction of heterojunctions, quantum confinement effects, and morphological modifications, the photocurrent reached 9.22 µA/cm2 which is 66 times greater than that of TiO2 nanotubes (TNTs). Then, a red light-responsive photoelectroactive hydrogel dressing (TBCHA) was developed by embedding TBNTs into a collagen/hyaluronic acid-based biomimetic extracellular matrix hydrogel with good biocompatibility, aiming to promote wound healing and skin function restoration. This approach is primarily grounded in the recognized significance of electrical stimulation in modulating nerve function and immune responses. Severe burns are often accompanied by extensive damage to epithelial-neural networks, leading to a loss of excitatory function and difficulty in spontaneous healing, while conventional dressings inadequately address the critical need for nerve reinnervation. Furthermore, we highlight the remarkable ability of the TBCHA photoelectric hydrogel to promote the reinnervation of nerve endings, facilitate the repair of skin substructures, and modulate immune responses in a deep burn model. This hydrogel not only underpins wound closure and collagen synthesis but also advances vascular reformation, immune modulation, and neural restoration. This photoelectric-based therapy offers a robust solution for the comprehensive repair of deep burns and functional tissue regeneration. STATEMENT OF SIGNIFICANCE: We explore the fabrication of 1D TiO2/Bi2S3 nanotubes with visible red-light excitability and high photoelectric conversion properties. By integrating heterojunctions, quantum absorption effects, and morphological modifications, the photocurrent of TiO2/Bi2S3 nanotubes could reach 9.22 µA/cm², which is 66 times greater than that of TiO2 nanotubes under 625 nm illumination. The efficient red-light excitability solves the problem of poor biosafety and low tissue penetration caused by shortwave excitation. Furthermore, we highlight the remarkable ability of the TiO2/Bi2S3 nanotubes integrated photoelectric hydrogel in promoting the reinnervation of nerve endings and modulating immune responses. This work proposes an emerging therapeutic strategy of remote, passive electrical stimulation, offering a robust boost for repairing deep burn wounds.

7.
Mater Horiz ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38919990

RESUMO

High-precision neural recording plays a pivotal role in unraveling the intricate mechanisms that underlie information transmission of the nervous system, raising increasing interest in the development of implantable microelectrode arrays (MEAs). The challenge lies in providing a truly soft, highly conductive and low-impedance neural interface for precise recording of the electrophysiological signals of individual neurons or neural networks. Herein, by implementing a novel topological regulation strategy of silk fibroin (SF) crosslinking, we prepared a flexible, hydrophilic, and biocompatible MEA substrate, facilitating a biocompatible neural interface that minimizes mechanical mismatch with biological tissues. Additionally, we established a strategy involving screen-printing combined with post-coating to prepare MEAs with high conductivity, low impedance and high capacitance, by coating PEDOT:PSS on titanium carbide (Ti3C2) microarrays. The Ti3C2 nanosheets, as the conductive track of the MEAs, avoided the charge drifting associated with metals and facilitated the processing of the MEAs. Further coating PEDOT:PSS on the electrode points reduced the impedance 100-fold, from 105 to 103 Ω. Experimental validation confirmed the superior electrophysiological signal recording capabilities of the SF-based MEA (SMEA) in peripheral and cerebral nerves with a much higher signal-to-noise ratio (SNR) of 20. In particular, we achieved high-precision recording of the action potential (AP) induced by flash visual stimulation, demonstrating high performance in weak signal recording. In summary, the development of SMEA provides a robust foundation for future investigations into the mechanisms and principles of neural circuit information transmission in complex nervous systems.

8.
Curr Med Sci ; 43(5): 988-997, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37755634

RESUMO

OBJECTIVE: Previous research indicates a link between cognitive impairment and chronic kidney disease (CKD), but the underlying factors are not fully understood. This study aimed to investigate the progression of CKD-induced cognitive impairment and the involvement of cognition-related proteins by developing early- and late-stage CKD models in Sprague-Dawley rats. METHODS: The Morris water maze test and the step-down passive avoidance task were performed to evaluate the cognitive abilities of the rats at 24 weeks after surgery. Histopathologic examinations were conducted to examine renal and hippocampal damage. Real-time PCR, Western blotting analysis, and immunohistochemical staining were carried out to determine the hippocampal expression of brain-derived neurotrophic factor (BDNF), choline acetyltransferase (ChAT), and synaptophysin (SYP). RESULTS: Compared with the control rats, the rats with early-stage CKD exhibited mild renal damage, while those with late-stage CKD showed significantly increased serum creatinine levels as well as apparent renal and brain damage. The rats with early-stage CKD also demonstrated significantly impaired learning abilities and memory compared with the control rats, with further deterioration observed in the rats with late-stage CKD. Additionally, we observed a significant downregulation of cognition-related proteins in the hippocampus of rats with early-stage CKD, which was further exacerbated with declining renal function as well as worsening brain and renal damage in rats with late-stage CKD. CONCLUSION: These results suggest the importance of early screening to identify CKD-induced cognitive dysfunction promptly. In addition, the downregulation of cognition-related proteins may play a role in the progression of cognitive dysfunction.

9.
Sci Total Environ ; 861: 160564, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36455743

RESUMO

Breast cancer is the most common malignant tumor in women worldwide, and environmental pollutants are considered to be risk factors. Currently, most studies into benzo[a]pyrene (B[a]P)-induced breast cancer focus on biological effects such as proliferation, invasion, and metastasis, DNA damage, estrogen receptor (ER)-related molecular mechanisms, oxidative damage, and other metabolic pathways. This study aims to provide insights into the role of B[a]P in breast cancer development through RNA-seq and bioinformatics analysis and construction of a competing endogenous RNA (ceRNA) regulatory network. By analyzing RNA-seq results, we identified 144 differentially-expressed circRNAs, 69 differentially-expressed lncRNAs, 20 differentially-expressed miRNAs, and 212 differentially-expressed mRNAs. Following on, we analyzed the gene ontology (GO) and KEGG enrichment functions of the differentially-expressed RNAs. In addition, the protein-protein interaction (PPI) network was mapped for differentially-expressed mRNAs. Subsequently, we constructed ceRNA networks, one of which consisted of 45 dysregulated circRNAs, 11 miRNAs, and 9 mRNAs, and a second consisted of 40 lncRNAs, 11 miRNAs, and 9 mRNAs. Finally, 6 circRNAs, 4 lncRNAs, 1 miRNA, and 4 mRNAs were randomly selected for quantitative real-time PCR verification. PCR results were further verified by Western blotting assays. These results show that the expression level of differentially-expressed RNA was consistent with the sequencing data, and the Western blotting results were highly consistent with the PCR results, confirming that the sequencing result was very reliable. This study systematically explores the ceRNA atlas of differentially-expressed genes related to B[a]P exposure in breast cancer cells, providing new insights into mechanisms of environmental pollutants in breast cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , Benzo(a)pireno/toxicidade , RNA Circular , Neoplasias da Mama/genética , RNA Longo não Codificante/genética , Sequenciamento do Exoma , Redes Reguladoras de Genes , MicroRNAs/genética , RNA Mensageiro/genética , Transcriptoma
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(2): 546-552, 2023 Apr.
Artigo em Zh | MEDLINE | ID: mdl-37096532

RESUMO

OBJECTIVE: To investigate the effect and relative mechanism of Recombinant Human Thrombopoietin (rhTPO) on long-term hematopoietic recovery in mice with acute radiation sickness. METHODS: Mice were intramuscularly injected with rhTPO (100 µg/kg) 2 hours after total body irradiation with 60Co γ-rays (6.5 Gy). Moreover, six months after irradiation, peripheral blood, hematopoietic stem cells (HSC) ratio, competitive transplantation survival rate and chimerization rate, senescence rate of c-kit+ HSC, and p16 and p38 mRNA expression of c-kit+ HSC were detected. RESULTS: Six months after 6.5 Gy γ-ray irradiation, there were no differences in peripheral blood white blood cells, red blood cells, platelets, neutrophils and bone marrow nucleated cells in normal group, irradiated group and rhTPO group (P>0.05). The proportion of hematopoietic stem cells and multipotent progenitor cells in mice of irradiated group was significantly decreased after irradiation (P<0.05), but there was no significant changes in rhTPO group (P>0.05). The counts of CFU-MK and BFU-E in irradiated group were significantly lower than that in normal group, and rhTPO group was higher than that of the irradiated group(P<0.05). The 70 day survival rate of recipient mice in normal group and rhTPO group was 100%, and all mice died in irradiation group. The senescence positive rates of c-kit+ HSC in normal group, irradiation group and rhTPO group were 6.11%, 9.54% and 6.01%, respectively (P<0.01). Compared with the normal group, the p16 and p38 mRNA expression of c-kit+ HSC in the irradiated mice were significantly increased (P<0.01), and it was markedly decreased after rhTPO administration (P<0.01). CONCLUSION: The hematopoietic function of mice is still decreased 6 months after 6.5 Gy γ-ray irradiation, suggesting that there may be long-term damage. High-dose administration of rhTPO in the treatment of acute radiation sickness can reduce the senescence of HSC through p38-p16 pathway and improve the long-term damage of hematopoietic function in mice with acute radiation sickness.


Assuntos
Lesões por Radiação , Trombopoetina , Animais , Humanos , Camundongos , Plaquetas , Células-Tronco Hematopoéticas , Proteínas Recombinantes/uso terapêutico , RNA Mensageiro/metabolismo , Trombopoetina/uso terapêutico
11.
Biosens Bioelectron ; 231: 115288, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058960

RESUMO

Bacterial cellulose (BC) with its inherent nanofibrils framework is an attractive building block for the fabrication of sustainable bioelectronics, but there still lacks an effective and green strategy to regulate the hydrogen-bonding topological structure of BC to improve its optical transparency and mechanical stretchability. Herein, we report an ultra-fine nanofibril-reinforced composite hydrogel by utilizing gelatin and glycerol as hydrogen-bonding donor/acceptor to mediate the rearrangement of the hydrogen-bonding topological structure of BC. Attributing to the hydrogen-bonding structural transition, the ultra-fine nanofibrils were extracted from the original BC nanofibrils, which reduced the light scattering and endowed the hydrogel with high transparency. Meanwhile, the extracted nanofibrils were connected with gelatin and glycerol to establish an effective energy dissipation network, leading to an increase in stretchability and toughness of hydrogels. The hydrogel also displayed tissue-adhesiveness and long-lasting water-retaining capacity, which acted as bio-electronic skin to stably acquire the electrophysiological signals and external stimuli even after the hydrogel was exposing to air condition for 30 days. Moreover, the transparent hydrogel could also serve as a smart skin dressing for optical identification of bacterial infection and on-demand antibacterial therapy after combined with phenol red and indocyanine green. This work offers a strategy to regulate the hierarchical structure of natural materials for designing skin-like bioelectronics toward green, low cost, and sustainability.


Assuntos
Técnicas Biossensoriais , Nanofibras , Celulose/química , Hidrogéis/química , Gelatina , Glicerol , Nanofibras/química , Hidrogênio
12.
Artigo em Inglês | MEDLINE | ID: mdl-37991543

RESUMO

Glomerulosclerosis and tubulointerstitial fibrosis (TIF) are closely involved in the development of diabetic nephropathy (DN). Moreover, the development of TIF is closely related to epithelial-to-mesenchymal transition (EMT). Tanshinone IIA (Tan) has various pharmacological effects, especially the anti-fibrotic effect. And it is mainly used in the clinical treatment of cardiovascular diseases. Currently, the protective effect of Tan on DN and its possible mechanism have not been clearly elucidated. Our previous studies illustrated that Tan could improve the EMT of HK-2 cells induced by high glucose by regulating the vitamin D receptor (VDR)/Wnt/ß-catenin pathway. Here, we collected demographic information and laboratory results from the National Health and Nutrition Examination Survey (NHANES) database in order to investigate the relationship between VD and DN. Then, we established a DN model and treated DN rats with Tan and paricalcitol (Par) for 6 weeks. We subsequently compared the changes in general condition, renal function, pathological changes, and TIF-related protein expression levels of control rats, DN rats induced by STZ, DN rats with Tan at 5.4 mg/kg, DN rats with Tan at 10.8 mg/kg, and DN rats with Par at 0.054 µg/kg, to explore the effect and mechanism of Tan and Par on DN rats. The results showed that VD had a protective effect against DN in diabetic patients. And we found that Tan had a protective effect on renal fibrosis in DN rats, which was superior to Par in improving the symptoms of "three more and one less," reducing fasting blood glucose level, improving renal index, BUN/SCr, and UACR, reducing histopathological damage of kidney, and improving the expression of fibrosis-related proteins in kidney tissue by regulating VDR/Wnt/ß-catenin pathway. Tan was superior to Par in ameliorating tubulointerstitial fibrosis by regulating VDR/Wnt/ß-catenin pathway in rats with diabetic nephropathy.

13.
J Mater Chem B ; 10(10): 1601-1611, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35171975

RESUMO

Electrical signals are a key factor to promote nerve cell neurogenesis. However, the traditionally used exogenous electrical stimulus mode requires additional equipment and complicated wiring, which is very inconvenient. To date, it has been challenging to provide electrical signals to nerve cells in a non-invasive and wireless controllable way, accompanied by the construction of a biomimetic cell microenvironment for supporting nerve cell survival and functional expression. Herein, a new concept of a light-powered oriented bioactive scaffold for remote and wireless electrical stimulation has been developed. By combining electrospinning and electrospraying, the highly oriented polycaprolactone (PCL) microfibrous scaffold with co-sprayed bioactive collagen and photoelectric poly-3-hexylthiophene nanoparticles (P3HT NPs) was obtained, named as PCL-P3HT-Col, which exhibits a considerable photoelectric effect and vital characteristics of the native nerve extracellular matrix. The results show that a photocurrent ranging from 20-80 pA was obtained by changing the light density of a 530 nm green light source. Further, the specific photoelectric conversion effect trigged by the P3HT NPs promotes the oriented elongation and up-regulation of neuronal characteristic factors in rat pheochromocytoma cells (PC12 cells), which is controlled by L-type voltage-gated calcium channel (L-VGCC) activity. This study provides new insights to engineer self-powered scaffolds towards the non-invasive and wireless-controlled stimulation mode of a variety of cells and tissues.


Assuntos
Colágeno , Alicerces Teciduais , Animais , Biomimética , Neurogênese , Neurônios , Ratos
14.
Plants (Basel) ; 11(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35406886

RESUMO

Soil salinization is a major environmental stressor that reduces the growth and yield of crops. Maintaining the balance of ions under salinity is vital for plant salt tolerance; however, little is known about the correlation between the salt tolerance of crops and the ion contents of their roots and shoots. Here, we investigated the poorly understood salt-tolerance mechanisms, particularly regarding ion contents (particularly Na+), in Brassica napus subsp. napus L., an agriculturally important species. Twenty B. napus inbred lines were randomly chosen from five salt-tolerance categories and treated with increasing concentrations of NaCl (0-200 mmol) for this work. We found that the root Na+ content is the most correlated limiting factor for the salt tolerance of B. napus; the higher the salt tolerance, the lower the root Na+ content. Correspondingly, the Ca2+/Na+ and K+/Na+ ratios of the roots were highly correlated with B. napus salt tolerance, indicating that the selective absorption ability of these ions by the roots and their translocation to the shoots play a pivotal role in this trait. These data provide a foundation for the further study of the molecular mechanisms underlying salt tolerance and for breeding salt-tolerant B. napus cultivars.

15.
EClinicalMedicine ; 49: 101476, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35747194

RESUMO

Background: The forecast accuracy of the European Association for the Study of the Liver-Chronic Liver Failure (EASL-CLIF) and Asian Pacific Association for the Study of the Liver (APASL) acute-on-chronic liver failure (ACLF) criteria in assessing long-term outcomes after liver transplantation (LT) is still unclear, especially when the staging of the two standards is inconsistent. Methods: A retrospective cohort (NCT05036031) including 565 patients from January 2015 to June 2021 was conducted. The 28 and 90 days, 1- and 3-years overall survival (OS) after LT were compared between different grades. Findings: Total of 162 (28.7%) and 230 (40.7%) patients met the ACLF standards. In the EASL-CLIF criteria, the 3-year OS rates were 83·0%, 80·3%, and 69·8% for ACLF1-3, respectively. In the APASL criteria, the 3-year OS rates were 85·7% for APASL ACLF Research Consortium (AARC)-1, similar to ACLF-1. The 3-year OS rates were 84·5% for AARC-2, which were slightly better than ACLF-2. Regarding AARC-3, the 3-year OS rate was 5·8% higher than ACLF-3. For patients who met neither set of criteria for ACLF, the 3-year OS rates were 89·8%. The multivariate analysis showed that alanine aminotransferase >100 U/L, respiration failure, and cerebral failure were independent risk factors for post-LT death. Interpretation: This study provides the first large-scale long-term follow-up data in Asia. Both criteria showed favorable distinguishing ability for post-LT survival. Patients with ACLF had a higher post-LT mortality risk, and ACLF-3 and AARC-3 correlated with significantly greater mortality. Funding: National Natural Science Foundation of China and Science and Technology Commission of Shanghai Municipality.

16.
Mater Horiz ; 9(8): 2215-2225, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35723211

RESUMO

A flexible non-transient electrical platform that can realize bidirectional neural communication from living tissues is of great interest in neuroscience to better understand basic neuroscience and the nondrug therapy of diseases or disorders. The development of soft, biocompatible, and conductive neural interface with mechanical coupling and efficient electrical exchange is a new trend but remains a challenge. Herein, we designed a multifunctional neural electrical communication platform in the form of a mechanically compliant, electrically conductive, and biocompatible hydrogel electrode. Silk fibroin (SF) obtained from Bombyx Mori cocoons was compounded with aldehyde-hyaluronic acid (HA-CHO) with a dynamic network to delay or interrupt the ß-sheet-induced hardening of SF chains, resulting in the fabrication of a hydrogel matrix that is mechanically matched to biological tissues. Moreover, the incorporation of functionalized carbon nanotubes (CNTs) facilitated interaction and dispersion and enabled the formation of a hydrogel electrode with a high-current percolation network, thus contributing toward improving the electrical properties in terms of conductivity, impedance, and charge storage capabilities. These advances allow high-efficiency stimulation and the recording of neural signals during in vivo implantation. Overall, a wide range of animal experiments demonstrate that the platform exhibits minimal foreign body responses, thus showing it to be a promising electrophysiology interface for potential applications in neuroscience.


Assuntos
Bombyx , Fibroínas , Nanotubos de Carbono , Animais , Condutividade Elétrica , Hidrogéis
17.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(6): 1887-1892, 2022 Dec.
Artigo em Zh | MEDLINE | ID: mdl-36476921

RESUMO

OBJECTIVE: To confirm the therapeutic effect of recombinant human thrombopoietin (rhTPO) on rhesus monkeys irradiated with 5.0 Gy 60Co γ-ray, and provide experimental basis for clinical treatment of similar patients. METHODS: Fourteen adult rhesus monkeys were irradiated with 60Co γ-ray on both sides at the dose of 5.0 Gy (dose rate 69.2 cGy/min) to establish the acute radiation sickness model. The monkeys were divided into irradiation group (n=5), rhTPO 5 µg/kg group (n=4) and rhTPO 10 µg/kg group (n=5). Two hours after irradiation, the three groups of monkeys were injected with saline 0.1 ml/kg, rhTPO 5 µg/kg(0.1 ml/kg) and rhTPO 10 µg/kg(0.2 ml/kg), respectively. The general signs, survival, peripheral hemogram and serum biochemistry of rhesus monkeys were observed before and after irradiation, and the differences between rhTPO group and irradiation control group were compared. RESULTS: After total body irradiation with 5.0 Gy60Co γ-ray, rhesus monkeys successively showed fever, hemorrhage, sharp decrease of whole blood cell counts in peripheral blood and disorder of serum biochemical indexes. Compared with the irradiated control group, a single intramuscular injection of rhTPO 5 µg/kg or 10 µg/kg 2 hours after irradiation could improve the symptoms of fever and bleeding, increase the nadir of peripheral red blood cells and platelets counts, shorten the duration of hemocytopenia, and advance the time for blood cells to return to the pre-irradiation level. The serum biochemical results showed that rhTPO could improve the abnormality of serum biochemical indexes in rhesus monkeys induced by 5.0 Gy total body irradiation to some extent. Compared with the two administration groups, the therapeutic effect of rhTPO 10 µg/ kg was better. CONCLUSION: A single injection of rhTPO 5 µg/ kg or 10 µg/ kg 2 hours after irradiation can alleviate the injury of multilineage hematopoiesis and promote the recovery in monkeys irradiated by 5.0 Gy γ-ray. It also improves animal signs and has obvious therapeutic effect on acute radiation sickness.


Assuntos
Lesões por Radiação , Humanos , Animais , Macaca mulatta
18.
Carbohydr Polym ; 278: 118961, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973776

RESUMO

Either oriented architecture or viscoelasticity is pivotal to neurogenesis, thus, native neural extracellular matrix derived-hyaluronan hydrogels with nano-orientation and viscoelasticity recapitulated might be instructive for neurogenesis, however it is still unexploited. Herein, based on aldehyde-methacrylate difunctionalized hyaluronan, by integrating imine kinetic modulation and microfluidic biofabrication, we construct a hydrogel system with orthogonal viscoelasticity and nano-topography. We then find the positive synergy effects of matrix nano-orientation and viscoelasticity not only on neurites outgrowth and elongation of neural cells, but also on neuronal differentiation of stem cells. Moreover, by implanting viscoelastic and nano-aligned hydrogels into lesion sites, we demonstrate the enhanced repair of spinal cord injury, including ameliorated pathological microenvironment, facilitated endogenous neurogenesis and functional axons regeneration as well as motor function restoration. This work supplies universal platform for preparing neuronal inducing hyaluronan-based hydrogels which might serve as promising therapeutic strategies for nerve injury.


Assuntos
Aldeídos/farmacologia , Ácido Hialurônico/farmacologia , Hidrogéis/farmacologia , Metacrilatos/farmacologia , Neurogênese/efeitos dos fármacos , Alicerces Teciduais/química , Aldeídos/química , Ácido Hialurônico/química , Hidrogéis/química , Metacrilatos/química , Engenharia Tecidual , Viscosidade
19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(4): 1255-1261, 2022 Aug.
Artigo em Zh | MEDLINE | ID: mdl-35981394

RESUMO

OBJECTIVE: To study the effect of interleukin-6 (IL-6) gene deletion on radiation-induced hematopoietic injury in mice and relative mechanism. METHODS: Before and after whole body 60Co γ-ray irradiation, it was analyzed and compared that the difference of peripheral hemogram, bone marrow hematopoietic stem and progenitor cells conts in IL-6 gene knockout (IL-6-/-) and wild-type (IL-6+/+) mice and serum IL-6 and G-CSF expression levels in above- mentioned mouse were detected. Moreover, 30 days survival rate of IL-6-/- and IL-6+/+ mice after 8.0 Gy γ-ray irradiation were analyzed. RESULTS: IL-6 levels in serum of IL-6+/+ and IL-6-/- mice were respectively (98.95±3.85) pg/ml and (18.36±5.61) pg/ml, which showed a significant statistical differences (P<0.001). There were no significant differences of peripheral blood cell counts and G-CSF level in serum between IL-6+/+ and IL-6-/- mice before irradiation (P>0.05). However, the number of leukocytes, neutrophils, lymphocytes, monocytes, platelets in peripheral blood and G-CSF level in serum of IL-6-/- mice were significantly decreased at 6 h after 8.0 Gy γ-ray irradiation compared with that of IL-6+/+ mice. On days 30 after 8.0 Gy γ-ray irradiation, the survival rate of IL-6+/+ and IL-6-/- mice was 62.5% and 12.5%, and the mean survival time of dead mice was 16.0±1.0 and 10.6±5.3 days, respectively. On days 14 after 6.5 Gy γ-ray irradiation, bone marrow nucleated cells in IL-6+/+ and IL-6-/- mice were respectively (10.0±1.2)×106 and (8.3±2.2)×106 per femur. Compared with IL-6+/+ mice, the proportion of Lin-Sca-1-c-kit+ (LK) in bone marrow of IL-6-/- mice had no significant change (P>0.05), but the proportion of Lin-Sca-1+c-kit+ (LSK) was significantly decreased (P<0.05). CONCLUSION: IL-6 plays an obvious role in regulating hematopoietic radiation injury, and IL-6 deficiency can inhibit the radiation-induced increase of endogenous G-CSF level in serum, aggravates the damage of mouse hematopoietic stem cells(HSC) and the reduction of mature blood cells in peripheral blood caused by ionizing irradiation, resulting in the shortening of the survival time and significant decrease of the survival rate of mice exposed to lethal dose radiation.


Assuntos
Interleucina-6/metabolismo , Lesões por Radiação , Animais , Deleção de Genes , Fator Estimulador de Colônias de Granulócitos/farmacologia , Camundongos , Irradiação Corporal Total
20.
Adv Healthc Mater ; 11(20): e2201255, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35932207

RESUMO

Delivering electrical signals to neural cells and tissue has attracted increasing attention in the treatment of nerve injuries. Unlike traditional wired electrical stimulation, wireless and remote light stimulation provides less invasive and longer-lasting interfaces, holding great promise in the treatment of nerve injuries and neurodegenerative diseases, as well as human-computer interaction. Additionally, a bioactive matrix that bridges the injured gap and induces nerve regeneration is essential for injured nerve repair. However, it is still challenging to construct a 3D biomimetic cell niche with optoelectrical responsiveness. Herein, a bioactive platform for remote and wireless optoelectrical stimulation is established by incorporating hydrophilic poly(3-hexylthiophene) nanoparticles (P3HT NPs) into a biomimetic hydrogel matrix. Moreover, the hydrogel matrix is modified by varying the composition and/or the crosslinking degree to meet the needs of different application scenarios. When exposed to pulsed green light, P3HT NPs in hydrogels convert light signals into electrical signals, resulting in the generation of tens of picoampere photocurrent, which is proved to promote the growth of cortical neurons that covered by hydrogels and the neuronal differentiation of bone marrow mesenchymal stem cells (BMSCs) encapsulated in hydrogels. This work is of great significance for the design of next-generation neural electrodes and scaffolds.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Humanos , Hidrogéis/farmacologia , Neurogênese , Estimulação Elétrica , Regeneração Nervosa , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA