Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 94(41): 14308-14316, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36194751

RESUMO

Great enthusiasm in single-atom catalysts for various catalytic reactions continues to heat up. However, the poor activity of the existing single/dual-metal-atom catalysts does not meet the actual requirement. In this scenario, the precise design of triple-metal-atom catalysts is vital but still challenging. Here, a triple-atom site catalyst of FeCoZn catalyst coordinated with S and N, which is doped in the carbon matrix (named FeCoZn-TAC/SNC), is designed. The FeCoZn catalyst can mimic the activity of oxidase by activating O2 into •O2- radicals by virtue of its atomically dispersed metal active sites. Employing this characteristic, triple-atom catalysts can become a great driving force for the development of novel biosensors featuring adequate sensitivity. First, the property of FeCoZn catalyst as an oxidase-like nanozyme was explored. The obtained FeCoZn-TAC/SNC shows remarkably enhanced catalytic performance than that of FeCoZn-TAC/NC and single/dual-atom site catalysts (FeZn, CoZn, FeCo-DAC/NC and Fe, Zn, Co-SAC/NC) because of trimetallic sites, demonstrating the synergistic effect. Further, the utility of the oxidase-like FeCoZn-TAC/SNC in biosensor field is evaluated by the colorimetric sensing of ascorbic acid. The nanozyme sensor shows a wide concentration range from 0.01 to 90 µM and an excellent detection limit of 6.24 nM. The applicability of the nanozyme sensor in biologically relevant detection was further proved in serum. The implementation of TAC in colorimetric detection holds vast promise for further development of biomedical research and clinical diagnosis.


Assuntos
Colorimetria , Oxirredutases , Ácido Ascórbico , Carbono/química , Catálise , Metais , Oxirredutases/química
2.
Small ; 18(33): e2203422, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35871552

RESUMO

In heterogeneous catalysis, metal particle morphology and size can influence markedly the activity. It is of great significance to rationally design and control the synthesis of Pt at the atomic level to demonstrate the structure-activity relationship toward electrocatalysis. Herein, a powerful strategy is reported to synthesize graphene-supported platinum-based electrocatalyst, that is, nanocatalysts with controllable size can be prepared by iced photochemical method, including single atoms (Pt-SA@HG), nanoclusters (Pt-Clu@HG), and nanocrystalline (Pt-Nc@HG). The Pt-SA@HG exhibits unexpected electrocatalytic hydrogen evolution reaction (HER) performances with 13 mV overpotential at 10 mA cm-2 current densities which surpass Pt-Clu@HG and Pt-Nc@HG. The in situ X-ray absorption fine structure spectroscopy (XAFS) and density functional theory (DFT) calculations determine the Pt-C3 active site is linchpin to the excellent HER performance of Pt-SA@HG. Compared with the traditional Pt-Nx coordination structure, the pure carbon coordinated Pt-C3 site is more favorable for HER. This work opens up a new way to adjust the metal particle size and catalytic performance of graphene at a multiscale level.


Assuntos
Grafite , Catálise , Grafite/química , Hidrogênio , Gelo , Platina
3.
ACS Biomater Sci Eng ; 9(2): 1066-1076, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36617740

RESUMO

The elevated antioxidant defense system in cancer cells can lead to resistance to treatments involving ROS. Breaking the redox balance of the cell system through a "open up the source and regulate the flow" strategy can inhibit the growth of cancer cells and thus design a cancer treatment strategy. Here, cobalt single atom-supported N-doped carbon nanozymes (Co SA-N/C) were synthesized via a simple sacrificial template method, which can mimic the properties of ascorbate oxidase and glutathione oxidase effectively. The synthesized Co SA-N/C can induce the generation of active oxygen by accelerating the oxidation of ascorbic acid (AA) and destroy the endogenous active oxygen scavenging system by consuming the main antioxidant, glutathione (GSH). In-depth in vitro and in vivo investigations indicate that compared with solo therapy, Co SA-N/C together with AA can significantly enhance the anti-tumor efficiency by simultaneously elevating oxidative stress and consuming the overexpressed glutathione (GSH) through the redox reaction catalyzed by Co SA-N/C. This work provides a promising route for developing nanozyme-guided and ascorbate-based antitumor agents.


Assuntos
Antioxidantes , Ácido Ascórbico , Ácido Ascórbico/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio , Cobalto/farmacologia , Oxirredução , Glutationa/farmacologia , Glutationa/metabolismo
4.
ACS Appl Mater Interfaces ; 14(41): 46401-46409, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36183270

RESUMO

The regulation of the coordination environment of the central metal atom is considered as an alternative way to enhance the performance of single-atom catalysts (SACs). Herein, we design an electrocatalyst with active sites of isolated Co atoms coordinated with four sulfur atoms supported on N-doped carbon frameworks (Co1-S4/NC), confirmed by high-angle annular dark-field scanning transmission electron microscope (HADDF-STEM) and synchrotron-radiation-based X-ray absorption fine structure (XAFS) spectroscopy. The Co1-S4/NC possesses higher hydrogen evolution reaction (HER) catalytic activity than other Co species and exceptional stability, which exhibits a small Tafel slope of 60 mV dec-1 and a low overpotential of 114 mV at 10 mA cm-2 during the HER in 0.5 M H2SO4 solution. Furthermore, through in situ X-ray absorption spectrum tests and density functional theory (DFT) calculations, we reveal the catalytic mechanism of Co1-S4 moieties and find that the increasing number of sulfur atoms in the Co coordination environment leads to a substantial reduction of the theoretical HER overpotential. This work may point a new direction for the synthesis, performance regulation, and practical application of single-metal-atom catalysts.

5.
Chem Commun (Camb) ; 57(22): 2710-2723, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33616591

RESUMO

Heterogeneous catalysts, as crucial industrial commodities, play an important role in industrial production, especially in energy catalysis. Traditional noble metal catalysts cannot meet the increasing demand. Therefore, the exploration of cost-effective catalysts with high activity and selectivity is important to promote chemical production. Single-atom alloy (SAA) catalysts reduce the use of precious metals compared with traditional catalysts. The unique structure of SAAs, extremely high atom utilization and high catalytic selectivity give them a prominent position in heterogeneous catalysis. SAAs are widely used in selective hydrogenation/dehydrogenation, carbon dioxide reduction reaction (CO2RR), hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and nitric oxide reduction reaction (NORR). Here, the applications and research progress of copper-based single-atom alloys in the various catalytic reactions mentioned above are mainly introduced, and the factors (such as synthesis method, composition content, etc.) affecting the catalytic performance are analyzed using a combination of various characterization and testing methods.

6.
Chem Commun (Camb) ; 57(87): 11561-11564, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34668004

RESUMO

A Pd-doped Pt3Sn-based single atom alloy catalyst (Pd-Pt3Sn) was synthesized via a hydrothermal method. The overpotential of Pd-Pt3Sn is lower than that of commercial Pd/C and IrO2 catalysts at 10 mA cm-2. This is due to the synergistic effect between Pt, Sn and Pd and the influence of electronic effects on their catalytic performance.

7.
Chem Commun (Camb) ; 57(17): 2164-2167, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33524088

RESUMO

We successfully fabricate a novel concave nanostructure that is composed of atomically dispersed Ru atoms in Pt3Sn nanoconcaves (Ru-Pt3Sn NCs), which shows enhanced performance in methanol electroxidation compared to commercial Pt/C. This could be ascribed to the stable intermetallic structure and active surface structure, as well as the synergy among Pt, Sn and Ru.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA