Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Molecules ; 29(19)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39407511

RESUMO

Nanoporous membranes offer significant advantages in direct contact membrane distillation applications due to their high flux and strong resistance to wetting. This study employs molecular dynamics simulations to explore the performance of membrane distillation in a single nanopore, mainly focusing on wetting behavior, liquid entry pressure, and membrane flux variations across different concentrations and types of salt solutions. The findings indicate that increasing the NaCl concentration enhances the wetting of membrane pores, thereby decreasing the entry pressure of the solution. However, at the same salt concentration, the differences in wetting and liquid entry pressure among various salts, including CaCl2, KCl, NaCl, and LiCl, are minimal. The presence of hydrated ions significantly reduces membrane flux. As the concentration of NaCl solutions increases, the number of hydrated ions rises, thereby lowering the membrane flux of the salt solution. Furthermore, the type of salt has a pronounced effect on the structure of hydrated ions. Solutions with Ca2+ and Li+ exhibit the smallest first-layer radius of hydrated ions. Under the same salt concentration, KCl solutions demonstrate the highest membrane distillation flux, while CaCl2 solutions show the lowest flux.

2.
Water Sci Technol ; 89(11): 3093-3103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877632

RESUMO

Hydraulic oil leaks during mechanical maintenance, resulting in flushing wastewater contaminated with dispersed nano-oil droplets. In this study, 75 mg L-1 of polysilicate aluminum ferric (PSAF) was stirred at 350 rpm and the optimal chemical oxygen demand (COD) removal was 71%. The increase of PSAF led to more hydrolysis of Fe, and 1,175 cm-1 hydroxyl bridged with negative oil droplets. At the same molar concentration, PSAF hydrolyzes cationic metals more rapidly than polymeric aluminum chloride (PAC). PSAF forms flocs of smaller complex structures with greater bridging. The Al-O and Si-O peaks occurred at 611 and 1,138 cm-1, indicating the formation of Si-O-Fe and Si-O-Al bonds on the flocs surface. Higher stirring speeds did not change the free energy of the flocs surface γTot, mainly because the decrease in the van der Waals force (γLW) offset the increase of Lewis acid-base force (γAB). Preserving the non-polar surface, in summary, owing to its bridging abilities and affinity for non-polar surfaces, PSAF demonstrates superior efficiency over PAC in capturing and removing oil droplets.


Assuntos
Compostos Férricos , Compostos Férricos/química , Alumínio/química , Óleos/química , Propriedades de Superfície , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos
3.
Water Sci Technol ; 90(3): 1070-1081, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39141052

RESUMO

The utilization of Bacillus sp. for the production of bio-CaCO3 in concrete crack repair and strength enhancement has attracted considerable attention. However, microbial-induced calcium carbonate precipitation (MICP) has yet to be explored as a precedent with activated sludge. Here calcium sourced from concrete slurry waste (CSW) and carbon from sludge microbial ß-oxidation under alkaline were used to generate micro/nano CaCO3. The results indicate that the main crystalline form of the generated precipitated particles is calcite, with a particle size ranging from 0.7 to 10 µm. Minimal heavy metals were found in the supernatant following settling. And at the optimum pH of 8.5-9, carbon capture reached 743 mg L-1, and CaCO3 production reached 1,191 mg L-1, and dominant phylum were Proteobacteria and Bacteroidota, with Thauera being a prevalent genus adept in ß-oxidation. Mass balance analysis showed that alkali promotes microbial ß-oxidation of organisms to produce CO2 and facilitate storage. Thus, the alkaline regulation of metabolism between microbe and CSW provides a novel way of sludge to initiate MICP.


Assuntos
Carbonato de Cálcio , Materiais de Construção , Esgotos , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Esgotos/microbiologia , Concentração de Íons de Hidrogênio , Eliminação de Resíduos Líquidos/métodos , Álcalis/química
4.
Water Sci Technol ; 87(4): 866-878, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36853767

RESUMO

The mechanical washing wastewater contained a large amount of oil, and the iron wrapped in the oil was slowly released into water. This caused the effluent quality to fluctuate, causing common polymeric aluminum chloride (PAC) to ineffectively remove the water-in-oil. The method uses Ca2+ to demulsify and ClOx- to destroy the water-in-oil structure, which releases Fe from the oil droplets. The active oxygen produced by NaClOx further converts Fe2+ into Fe3+ and then combines with NaOH to form Fe(OH)3-flocs core, which improves the flocculation efficiency of PAC. The optimal ratio was approximately 400 µL of NaClOx, 200 µL of 1 mol L-1 CaO, and 12 mL of 12.8 g L-1 PAC. The oil removal rate reached 99.88% and the residue density was 178.42 mg L-1. The maximum Fe and chemical oxygen demand (COD) removal rates were close to 49.2 and 99.89%, respectively. In field applications, wastewater should be acidified first, and acidification oxidation is more effective than direct oxidation. In short, a novel way for treating mechanically washed wastewater with iron-in-oil characteristics by changing the environmental fate of iron is provided.


Assuntos
Ferro , Águas Residuárias , Cloreto de Alumínio , Bioensaio , Polímeros , Água
5.
Water Sci Technol ; 83(5): 1108-1117, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33724940

RESUMO

It is difficult to adjust the pH of oil acidized wastewater rich in Ca2+, thus hindering the polyacrylamide (PAM) flocculation. This study aims at accelerating the flocculation process by introducing CO2 into the water to induce the formation of CaCO3 nuclei. The order in which CO2 and NaOH were added affected the floc structures. Compared with CO2-NaOH-PAM, the flocs of NaOH-CO2-PAM were more compact and more CaCO3 crystals were formed. The aqueous Ca2+ involved in the reaction reached 20%, and CO2 utilization was enhanced. The settling time was shortened by half (from 20 to 3 min), and NaOH consumption was reduced by one-tenth (from 0.03 to 0.003 mol), hence significantly reducing the costs. Due to the higher settling rate and shorter contact time, the NaOH-CO2-PAM flocs adsorbed less so that the residual oil was 124 mg·L-1, while in the case of CO2-NaOH-PAM it was 88 mg·L-1. As a promising coagulation aid, CO2 can also be used to mineralize pollutants in wastewater.


Assuntos
Poluentes Ambientais , Purificação da Água , Dióxido de Carbono , Custos e Análise de Custo , Floculação , Águas Residuárias
6.
Water Sci Technol ; 77(11-12): 2677-2686, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29944132

RESUMO

The pH value of oil acidized wastewater is relatively low (pH = 6.1), which seriously affects the flocculation of polyacrylamide (PAM). NaOH was used to adjust the pH value, but the maximum was only 7.5. The regulation was limited as the Ca2+ in aqueous phase up to 1,350 mg L-1 consumed OH-. A novel formulation of Na2CO3 + PAM was proposed to form CaCO3 floc core to facilitate PAM coagulation. When the concentration was above 400 mg L-1, the PAM precipitation tended to be maximum, followed by NaOH adjustment of pH to 8.0 that could enhance PAM flocculation successively. The sewage sludge (SS) remained and residue oil reduced to 25 mg L-1 and 34mg L-1 respectively. The analysis of the species and composition of fatty acids indicated that the coagulation-flocculation selectively effected the sedimentation of saturated fatty acids (SAT). This provides a new idea for recovery of high value-added residual oil. The optimal additive of Na2CO3 is expected as promising coagulant aid to improve the PAM coagulation-flocculation of oil acidized wastewater.


Assuntos
Resinas Acrílicas/química , Carbonatos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Carbonato de Cálcio/química , Ácidos Graxos/química , Floculação , Concentração de Íons de Hidrogênio , Campos de Petróleo e Gás , Esgotos
7.
Pediatr Blood Cancer ; 63(4): 706-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26514327

RESUMO

Neurofibromatosis type 1 (NF1) is caused by mutations in the tumor suppressor gene NF1. The increased tumor risk in affected individuals is well established, caused by somatic biallelic inactivation of NF1 due to loss of heterozygosity. Pediatric teratoma has not been reported in individuals with NF1 previously. We report a case of congenital teratoma in an infant with a heterozygous maternally inherited pathogenic NF1 mutation (c.[1756_1759delACTA] and p.[Thr586Valfs*18]). We detected a "second hit" in the form of mosaic whole NF1 deletion in the tumor tissue using multiplex ligation-dependent probe amplification, as a proof to support the hypothesis of NF1 involvement in the pathogenesis of teratoma.


Assuntos
Neurofibromatose 1/complicações , Neoplasias Retroperitoneais/congênito , Neoplasias Retroperitoneais/genética , Teratoma/congênito , Teratoma/genética , Genes da Neurofibromatose 1 , Humanos , Recém-Nascido , Masculino , Reação em Cadeia da Polimerase Multiplex , Mutação , Neurofibromatose 1/genética , Neoplasias Retroperitoneais/patologia , Teratoma/patologia
8.
Environ Sci Technol ; 49(9): 5663-71, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25844535

RESUMO

Microbial biofilms can cause severe problems in technical installations where they may give rise to microbially influenced corrosion and clogging of filters and membranes or even threaten human health, e.g. when they infest water treatment processes. There is, hence, high interest in methods to prevent microbial adhesion as the initial step of biofilm formation. In environmental technology it might be desired to enhance bacterial transport through porous matrices. This motivated us to test the hypothesis that the attractive interaction energy allowing cells to adhere can be counteracted and overcome by the shear force induced by electroosmotic flow (EOF, i.e. the water flow over surfaces exposed to a weak direct current (DC) electric field). Applying EOF of varying strengths we quantified the deposition of Pseudomonas fluorescens Lp6a in columns containing glass collectors and on a quartz crystal microbalance. We found that the presence of DC reduced the efficiency of initial adhesion and bacterial surface coverage by >85%. A model is presented which quantitatively explains the reduction of bacterial adhesion based on the extended Derjaguin, Landau, Verwey, and Overbeek (XDLVO) theory of colloid stability and the EOF-induced shear forces acting on a bacterium. We propose that DC fields may be used to electrokinetically regulate the interaction of bacteria with surfaces in order to delay initial adhesion and biofilm formation in technical installations or to enhance bacterial transport in environmental matrices.


Assuntos
Bactérias/metabolismo , Técnicas Eletroquímicas/métodos , Bactérias/crescimento & desenvolvimento , Aderência Bacteriana , Contagem de Colônia Microbiana , Eletricidade , Técnicas de Microbalança de Cristal de Quartzo , Eletricidade Estática
9.
Materials (Basel) ; 17(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39063772

RESUMO

Traditional rock wool fibres are susceptible to crystallization and pulverization. To mitigate this, glass fibres were produced from iron ore waste (IOW). When the ratio of Fe2+ and Fe3+ is 1:3 and the Al2O3 content is 10 wt.%, increasing the FexOy content enhances the thermal stability.At an FexOy content of 17-19% and an Al2O3 content of 10-13%, the glass transition temperature (Tg) peaked. Increasing the FexOy content from 10% to 20% enhanced the stability of Si-O and Al-O bonds and increased bridged oxygen, stabilizing the structure. Here, Fe2+ balances structural charges, while Fe3+ replaces some Al atoms in the network. When the Al2O3 content is 10-13% and the FexOy content is 17-19%, the thermal stability of the IOW rock glass reaches its optimal level. At 20% FexOy content, the structure becomes three-dimensional and cyclic, increasing polymerization. Consequently, incorporating FexOy alongside a 10% Al2O3 content improves thermal stability, supporting the development of high-stability rock wool from IOW. This approach also enhances the refractory properties of rock wool fibres within the FexOy-Al2O3-SiO2-MgO-CaO system.

10.
Water Res ; 267: 122509, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39353347

RESUMO

Mitigating harmful cyanobacterial blooms is a global challenge, particularly crucial for safeguarding source water. Given the limitations of current technologies for application in drinking water reservoirs, we propose an innovative strategy based on in-situ sediment resuspension (SR). This method's effectiveness in cyanobacterial control and its potential impacts on water quality were assessed through laboratory culture experiments and further validated via field applications in five drinking water reservoirs. The results revealed that SR could significantly mitigate cyanobacterial growth, evidenced by the treated sets (removal rate: 3.82×106 cells L-1d-1) compared to the control set (growth rate: 2.22×107 cells L-1d-1) according to the laboratory experiments. The underlying mechanisms identified included underwater light reduction (2.38× increase in extinction coefficient) and flocculation and entrainment of cells by resuspended particles (30 % reduction per operation). Additional contributions were noted in the reduction of bioavailable phosphate and remediation of anaerobic sediment characterized by increased redox potential. This facilitated the oxidation of iron, which in turn promoted the co-precipitation of phosphate (removal rate: 46 µg L-1d-1) and inhibited its release from the sediment. The SR operation, devoid of importing extra substances, represents a safe and economical technology for controlling harmful cyanobacteria in drinking water reservoirs.

11.
Chemosphere ; 311(Pt 1): 137007, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36330982

RESUMO

Up to 95% of hormones are excreted into domestic wastewater with urine or feces, but their macromolecules are difficult to biodegrade. This project studies the treatment of Ethinyl Estradiol (EE2) in swine wastewater in an Upstream Solids Reactor (USR), and explores a new method for oriented bio-feeding to regulate the anaerobic biodegradation process. It was found that the metabolism of lactic acid and propionic acid was accompanied by changes in EE2 content, but lactic acid molecules were not readily bioavailable, so adding propionic acid was more suitable. However, controlling the pH to lower (4.73) and higher (8.73) values inhibited further fermentation of acetic acid and propionic acid, which was not favorable for the removal of EE2. This is simply due to the fact that propionic acid as a carbon source changes the preference of the microbes for consuming EE2. The order of the effect of addition of propionic acid on the removal of EE2 was as follows: P400>P800>P0>P200 (addition of propionic acid). The P400 removal efficiency increased from 60% to 85%. In the metabolism of EE2, after oxidation, hydrolysis, ketosis, hydroxylation and enzymatic action, dienoic acid and oleic acid were generated, and there was no secondary pollution from EE2 metabolites. In conclusion, feeding microorganisms with propionic acid can enhance the anaerobic biodegradation of EE2, providing a new strategy for the anaerobic biodegradation and bioremediation of refractory pollutants.


Assuntos
Etinilestradiol , Águas Residuárias , Animais , Suínos , Etinilestradiol/metabolismo , Biodegradação Ambiental , Anaerobiose , Ácido Láctico , Estradiol/metabolismo
12.
Chemosphere ; 242: 125161, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31683161

RESUMO

Interactions with solid matrices control the persistence and (bio-)degradability of hydrophobic organic chemicals (HOC). Approaches influencing the rate or extent of HOC interactions with matrices are thus longed for. When a direct current (DC) electric field is applied to a matrix immersed in an ionic solution, it invokes transport processes including electromigration, electrophoresis, and electroosmotic flow (EOF). EOF is the surface charge-induced movement of pore fluids. It has the potential to mobilize uncharged organic contaminants and, hence, to influence their interactions with sorbing geo-matrices (i.e. geo-sorbents). Here, we assessed the effects of weak DC electric fields on sorption and desorption of phenanthrene (PHE) in various mineral and carbonaceous geo-sorbents. We found that DC fields significantly changed the rates and extent of PHE sorption and desorption as compared to DC-free controls. A distinct correlation between the Gibbs free energy change (ΔG°) and electrokinetic effects such as the EOF velocity was observed; in case of mineral sorbents EOF limited (or even inhibited) PHE sorption and increased its desorption. In strongly sorbing carbonaceous geo-sorbents, however, EOF significantly increased the rates of PHE sorption and reduced PHE desorption by > 99% for both activated charcoal and exfoliated graphite. Based on our findings, an approach linking ΔG° and EOF velocity was developed to estimate DC-induced PHE sorption and desorption benefits on mineral and carbonaceous sorbents. We conclude that such kinetic regulation gives rise to future technical applications that may allow modulating sorption processes e.g. in response to fluctuating sorbate concentrations in contaminated water streams.


Assuntos
Eletro-Osmose , Minerais/química , Modelos Químicos , Fenantrenos/química , Poluentes Químicos da Água/química , Adsorção , Carvão Vegetal/química , Eletroquímica , Eletrodos , Grafite/química , Interações Hidrofóbicas e Hidrofílicas , Cinética , Rios/química , Propriedades de Superfície
13.
Waste Manag ; 85: 361-373, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30803591

RESUMO

The objective of this study is to explore how to stimulate soil indigenous bacteria for the degradation of long-chain crude oil by adding fermented food waste supernatant (FS). Four concentrations of FS (0 mL, 0.1 mL, 1 mL, and 3 mL) were added to two oil-contaminated soils S1 and S2 for 30 days of bioremediation experiments. The results showed that the biodegradation of long-chain alkanes (C29 - C24) could reach up to 1756 mg/kg (49.3%, S1) and 3937 mg/kg (43.9%, S2), which were 3.1 and 3.2 times that of the non-nutrient system. In addition, the logarithmic growth rate of the indigenous hydrocarbon degraders (IHD) reached 41.5%. The long-chain crude oil can be rapidly degraded by indigenous bacteria with FS added in a short time. The glucose and acetic acid accelerated the consumption of ammonia nitrogen (NH4+-N) in the prophase of bioremediation and the molar ratio of consumed carbon (contained in glucose and acetic acid) to consumed NH4+-N (C/N) was high by adding FS. Thus, the IHD can multiply rapidly. The analysis of microbial diversity revealed that the IHD (genera Acinetobacter and Aquabacterium) became the dominant bacteria. Long-chain alkanes became the main carbon sources for IHD after 14 days in soil S1 and 16 days in soil S2. Thus, the rapid biodegradation of long-chain crude oil was achieved. The genus Aquabacterium which was uncultivable on crude oil medium became the dominant bacteria. This study provides an environment-friendly and sustainable remediation technology for bioremediation of oil-contaminated soils.


Assuntos
Alimentos Fermentados , Petróleo , Poluentes do Solo , Bactérias , Biodegradação Ambiental , Hidrocarbonetos , Solo , Microbiologia do Solo
14.
Waste Manag ; 93: 47-53, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31235056

RESUMO

Urban expansion has led to the accumulation of sludge, and its disposal has to meet increasingly stringent requirements. Therefore, pyrolysis has become an alternative option. However, it was still unclear which part of the sludge could be pyrolyzed to generate the product with a higher heating value, and therefore we divided sludge into extracellular polymeric substances (EPS) and cell phase and measured their heating values respectively. The obtained results showed that the high heating value (HHV) of the pyrolysis cell phase accounted for 85% of the sludge pyrolysis, and the addition of protein significantly increased the heating value of each component. Although the HHV of the pyrolysis cell phase increased by 1.8 MJ kg-1 for every 1% increase in protein, the HHV of the pyrolysis sludge and EPS increased by only 1.2 MJ kg-1. It is therefore suggested that EPS may contain substances that inhibit heat release. Properly increasing the cellular or protein components in the sludge could significantly increase the HHV produced by pyrolysis. Based on the measurement of fatty acids (FAs) and alcohol content and FTIR results, the addition of protein could increase the saturated FAs and accelerate the replacement of oxygen with nitrogen in the pyrolysis product, resulting in higher HHV. If the sludge was not dehydrated, more volatile compounds were carbonized and the HHV increased from 12 MJ kg-1 to 19 MJ kg-1. In short, since the HHV of the sludge was mainly derived from the cell phase, the HHV generation could be improved by increasing the cell phase or protein content without dehydration.


Assuntos
Desidratação , Esgotos , Temperatura Alta , Humanos , Nitrogênio , Pirólise
15.
Environ Sci Pollut Res Int ; 26(26): 26912-26924, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31302887

RESUMO

The use of pyrolysis to produce oil from sludge by the evaporation-condensation process is a promising technique. However, the resulting lipids are prone to be acidized under exposure to oxygen, which can affect their quality and use. To eliminate the need for this oil separation process, the present work uses blended pyrolysis to preserve the oil in the char and to prevent it from deteriorating. At the same time, metals are eliminated to a secure level of combustion emissions. The sludge was pyrolyzed into a sintering fuel through blended pyrolysis with SiO2, Al2O3, and sand. These materials are the main components of the sintered ceramsite obtained. Therefore, the influence of these substances and residence time on lipid formation and metal residue in the char were investigated. Non-blended pyrolysis required a 40-min duration, whereas sand-pyrolysis required 10 min to achieve the same yield. The concentration of C16:0 produced by blended pyrolysis with sand reached 2177 mg kg-1, which is 57% higher than that of non-blended pyrolysis. Blended pyrolysis with SiO2 required at least 20 min to immobilize As metal. In summary, blended pyrolysis simplifies the process, reduces time, and produces char with lipid-rich and low metal leaching, which can be used as a sintering fuel.


Assuntos
Esgotos/química , Gerenciamento de Resíduos/métodos , Óxido de Alumínio , Lipídeos/química , Metais/química , Pirólise , Dióxido de Silício/química
16.
Environ Sci Pollut Res Int ; 25(36): 36581-36588, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30374723

RESUMO

The pyrolyzed sludge is concerned currently, while the produced higher heating value (HHV) is unclear yet. In this work, the effects of moisture content (MC), catalysts amount, and catalytic types on the HHV production were investigated. Based on the known fatty acids (FAs) and alcohol content, the heat release by catalytic and non-catalytic pyrolysis product was examined. A good correlation between the measured and calculated HHV in non-catalytic pyrolysis indicates that the method can effectively evaluate the pyrolysis effect. The results show that a higher HHV can be obtained by adding a catalyst when the MC was between 20 and 40% compared to the non-catalytic pyrolysis. In the catalytic pyrolysis, the maximum HHV produced by bentonite is 50.61 MJ kg-1. Bentonite can rapidly initiate the decarboxylation but sand was a potential efficient catalyst because of the enrichment of large amounts of FAs C16:0. If sand is used in combination with bentonite, C16:0 may be enriched and further decarboxylated, eventually releasing more heat. Since sand is composed of SiO2 and Al2O3, in the production of HHV, the addition of Al2O3 has a better catalytic effect than adding SiO2. For the evaluation of catalytic pyrolysis products and HHV, it is proposed that the possibility of adding two types of catalysts for pyrolysis is of great significance for realizing sludge to the fuel.


Assuntos
Pirólise , Esgotos/química , Dióxido de Silício/química , Carboidratos/química , Catálise , Temperatura Alta , Proteínas/química
17.
J Hazard Mater ; 288: 25-33, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25686536

RESUMO

Exfoliated graphite (EG) exhibits exceptional sorption capacity for petroleum and dissolved hydrocarbons owing to its highly hydrophobic surface and wide pore size distribution. The high price of preparing EG, however, restricts its application. Methods which increase the rate or extent of sorption to EG even further are thus longed for. Here, we assess the effects of weak direct current (DC) fields on the sorption of the polycyclic aromatic hydrocarbon phenanthrene (PHE) to EG. DC applied to an ionic solution in a solid matrix invokes electroosmotic flow (EOF), i.e., the surface charge-induced movement of the solution. EG was exposed to weak DC fields in the presence of dissolved PHE to test if EOF increases transport of PHE to poorly accessible sorption sites. DC fields increased PHE sorption rates in EG sevenfold and reduced the desorption rate of sorbed PHE by >99%. EOF thus appeared to be highly effective in translocating PHE into pores, which contribute most of the sorption sites, but are difficult to access in the absence of EOF by molecular diffusion only. The observed 'power of power' may be used to kinetically regulate the interaction of sorbates with EG or other porous sorbents in environmental (bio-) technology.


Assuntos
Grafite/química , Hidrocarbonetos Policíclicos Aromáticos/química , Adsorção , Eletroquímica , Campos Eletromagnéticos , Eletro-Osmose , Fenantrenos/química , Termodinâmica , Termogravimetria
18.
J Hazard Mater ; 280: 750-7, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25238192

RESUMO

A systematic investigation of environmentally relevant transformation processes of alpha-hexachlorocyclohexane (α-HCH) was performed in order to explore the potential of compound specific stable isotope analysis (CSIA) to characterize reaction mechanisms. The carbon isotope enrichment factors (ɛC) for the chemical transformations of α-HCH via direct photolysis, indirect photolysis (UV/H2O2), hydrolysis, electro-reduction or reduction by Fe(0) were quantified and compared to those previously published for biodegradation. Hydrogen abstraction by hydroxyl radicals generated by UV/H2O2 led to ɛC of -1.9 ± 0.2 ‰ with an apparent kinetic carbon isotope effect (AKIEC) of 1.012 ± 0.001. Dehydrochlorination by alkaline hydrolysis yielded ɛC of -7.6 ± 0.4 ‰ with AKIEC of 1.048 ± 0.003. Dechlorination either by homolytic bond cleavage in direct photolysis (ɛC=-2.8 ± 0.2 ‰) or single-electron transfer in electro-reduction (ɛC=-3.8 ± 0.4 ‰) corresponded to AKIEC of 1.017 ± 0.001 and 1.023 ± 0.003, respectively. Dichloroelimination catalyzed by Fe(0) via two-electron transfers resulted in ɛC of -4.9 ± 0.1 ‰. AKIEC values assuming either a concerted or a stepwise mechanism were 1.030 ± 0.0006 and 1.015 ± 0.0003, respectively. Contrary to biodegradation, no enantioselectivity of α-HCH was observed in chemical reactions, which might be used to discriminate chemical and biological in situ transformations.


Assuntos
Poluentes Ambientais/química , Hexaclorocicloexano/química , Isótopos de Carbono/análise , Hidrólise , Ferro , Nanopartículas , Oxirredução , Fotólise
19.
Vet Immunol Immunopathol ; 140(1-2): 170-4, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21163535

RESUMO

The Complement Factor B gene (CFB) of the alternative complement pathway has been identified in the sheep Major Histocompatibility Complex (MHC) and its genomic sequence determined. CFB is located approximately 600 bp upstream of the complement C2 gene, contains 18 exons, and manifests the domain signature characteristic of CFB protein. Thirteen single nucleotide polymorphisms were identified in merino sheep and interbreed variation was identified by comparison with International Sheep Genomics Consortium data. Two predicted non synonymous substitutions were observed and in-silico analysis indicates that these are likely to have a destabilizing effect on the protein structure. Sheep and cattle CFB were compared and shown to contain a common nine nucleotide deletion in exon 18 relative to human CFB. Predicted CFB amino acid sequences for these two species contain 761 aa relative to 764 aa in the human orthologue. Sequencing of the cosmid and BAC clones used in this study permitted the relative positions of three adjacent loci to be determined and showed that the previously described microsatellite locus (BfMs) is located within SKIV2L.


Assuntos
Fator B do Complemento/genética , Polimorfismo de Nucleotídeo Único , Carneiro Doméstico/genética , Sequência de Aminoácidos , Animais , Bovinos , Clonagem Molecular , Complexo Principal de Histocompatibilidade/genética , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA