Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Lipids Health Dis ; 23(1): 44, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331899

RESUMO

BACKGROUND AND AIMS: To study the role of gene mutations in the development of severe hypertriglyceridemia (HTG) in patients with hyperlipidemic acute pancreatitis (HLAP), especially different apolipoprotein A5 (APOA5) mutations. METHODS: Whole-exome sequencing was performed on 163 patients with HLAP and 30 patients with biliary acute pancreatitis (BAP). The pathogenicity of mutations was then assessed by combining clinical information, predictions of bioinformatics programs, information from multiple gene databases, and residue location and conservation. The pathogenic mutations of APOA5 were visualized using the software. RESULTS: 1. Compared with BAP patients, pathogenic mutations of APOA5 were frequent in HLAP patients; among them, the heterozygous mutation of p.G185C was the most common. 2. All six pathogenic mutations of APOA5 identified in this study (p.S35N, p.D167V, p.G185C, p.K188I, p.R223C, and p.H182fs) were positively correlated with severe HTG; they were all in the important domains of apolipoprotein A-V (apoA-V). Residue 223 is strictly conserved in multiple mammals and is located in the lipoprotein lipase (LPL)-binding domain (Pro215-Phe261). When Arg 223 is mutated to Cys 223, the positive charge of this residue is reduced, which is potentially destructive to the binding function of apoA-V to LPL. 3. Four new APOA5 mutations were identified, namely c.563A > T, c.667C > T, c.788G > A, and c.544_545 insGGTGC. CONCLUSIONS: The pathogenic mutations of APOA5 were specific to the patients with HLAP and severe HTG in China, and identifying such mutations had clinical significance in elucidating the etiology and subsequent treatment.


Assuntos
Hipertrigliceridemia , Pancreatite , Humanos , Apolipoproteína A-V/genética , Apolipoproteínas A/genética , Apolipoproteínas A/metabolismo , Doença Aguda , Pancreatite/genética , Lipase Lipoproteica/genética , Hipertrigliceridemia/complicações , Hipertrigliceridemia/genética , Mutação
2.
Glob Chang Biol ; 29(14): 3910-3923, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37097019

RESUMO

The status of plant and microbial nutrient limitation have profound impacts on ecosystem carbon cycle in permafrost areas, which store large amounts of carbon and experience pronounced climatic warming. Despite the long-term standing paradigm assumes that cold ecosystems primarily have nitrogen deficiency, large-scale empirical tests of microbial nutrient limitation are lacking. Here we assessed the potential microbial nutrient limitation across the Tibetan alpine permafrost region, using the combination of enzymatic and elemental stoichiometry, genes abundance and fertilization method. In contrast with the traditional view, the four independent approaches congruently detected widespread microbial nitrogen and phosphorus co-limitation in both the surface soil and deep permafrost deposits, with stronger limitation in the topsoil. Further analysis revealed that soil resources stoichiometry and microbial community composition were the two best predictors of the magnitude of microbial nutrient limitation. High ratio of available soil carbon to nutrient and low fungal/bacterial ratio corresponded to strong microbial nutrient limitation. These findings suggest that warming-induced enhancement in soil nutrient availability could stimulate microbial activity, and probably amplify soil carbon losses from permafrost areas.


Assuntos
Pergelissolo , Ecossistema , Nitrogênio , Fósforo , Solo , Carbono , Microbiologia do Solo
3.
Glob Chang Biol ; 29(16): 4638-4651, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37114938

RESUMO

Climate warming leads to widespread permafrost thaw with a fraction of the thawed permafrost carbon (C) being released as carbon dioxide (CO2 ), thus triggering a positive permafrost C-climate feedback. However, large uncertainty exists in the size of this model-projected feedback, partly owing to the limited understanding of permafrost CO2 release through the priming effect (i.e., the stimulation of soil organic matter decomposition by external C inputs) upon thaw. By combining permafrost sampling from 24 sites on the Tibetan Plateau and laboratory incubation, we detected an overall positive priming effect (an increase in soil C decomposition by up to 31%) upon permafrost thaw, which increased with permafrost C density (C storage per area). We then assessed the magnitude of thawed permafrost C under future climate scenarios by coupling increases in active layer thickness over half a century with spatial and vertical distributions of soil C density. The thawed C stocks in the top 3 m of soils from the present (2000-2015) to the future period (2061-2080) were estimated at 1.0 (95% confidence interval (CI): 0.8-1.2) and 1.3 (95% CI: 1.0-1.7) Pg (1 Pg = 1015 g) C under moderate and high Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5, respectively. We further predicted permafrost priming effect potential (priming intensity under optimal conditions) based on the thawed C and the empirical relationship between the priming effect and permafrost C density. By the period 2061-2080, the regional priming potentials could be 8.8 (95% CI: 7.4-10.2) and 10.0 (95% CI: 8.3-11.6) Tg (1 Tg = 1012 g) C year-1 under the RCP 4.5 and RCP 8.5 scenarios, respectively. This large CO2 emission potential induced by the priming effect highlights the complex permafrost C dynamics upon thaw, potentially reinforcing permafrost C-climate feedback.


Assuntos
Pergelissolo , Dióxido de Carbono/análise , Solo , Clima
4.
Glob Chang Biol ; 28(16): 4845-4860, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35650709

RESUMO

Microbial growth and respiration are at the core of the soil carbon (C) cycle, as these microbial physiological performances ultimately determine the fate of soil C. Microbial C use efficiency (CUE), a critical metric to characterize the partitioning of C between microbial growth and respiration, thus controls the sign and magnitude of soil C-climate feedback. Despite its importance, the response of CUE to nitrogen (N) input and the relevant regulatory mechanisms remain poorly understood, leading to large uncertainties in predicting soil C dynamics under continuous N input. By combining a multi-level field N addition experiment with a substrate-independent 18 O-H2 O labelling approach as well as high-throughput sequencing and mineral analysis, here we elucidated how N-induced changes in plant-microbial-mineral interactions drove the responses of microbial CUE to N input. We found that microbial CUE increased significantly as a consequence of enhanced microbial growth after 6-year N addition. In contrast to the prevailing view, the elevated microbial growth and CUE were not mainly driven by the reduced stoichiometric imbalance, but strongly associated with the increased soil C accessibility from weakened mineral protection. Such attenuated organo-mineral association was further linked to the N-induced changes in the plant community and the increased oxalic acid in the soil. These findings provide empirical evidence for the tight linkage between mineral-associated C dynamics and microbial physiology, highlighting the need to disentangle the complex plant-microbe-mineral interactions to improve soil C prediction under anthropogenic N input.


Assuntos
Carbono , Nitrogênio , Minerais , Plantas , Solo , Microbiologia do Solo
5.
Glob Chang Biol ; 28(3): 936-949, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34726326

RESUMO

Microbial necromass carbon (C) has been considered an important contributor to persistent soil C pool. However, there still lacks large-scale systematic observations on microbial necromass C in different soil layers, particularly for alpine ecosystems. Besides, it is still unclear whether the relative importance of biotic and abiotic variables such as plant C input and mineral properties in regulating microbial necromass C would change with soil depth. Based on the combination of large-scale sampling along a ~2200 km transect across Tibetan alpine grasslands and biomarker analysis, together with a global data synthesis across grassland ecosystems, we observed a relatively low proportion of microbial-derived C in Tibetan alpine grasslands compared to global grasslands (topsoil: 45.4% vs. 58.1%; subsoil: 41.7% vs. 53.7%). We also found that major determinants of microbial necromass C depended on soil depth. In topsoil, both plant C input and mineral protection exerted dominant effects on microbial necromass C. However, in subsoil, the physico-chemical protection provided by soil clay particles, iron-aluminum oxides, and exchangeable calcium dominantly facilitated the preservation of microbial necromass C. The differential drivers over microbial necromass C between soil depths should be considered in Earth system models for accurately forecasting soil C dynamics and its potential feedback to global warming.


Assuntos
Carbono , Solo , Carbono/análise , Ecossistema , Pradaria , Solo/química , Microbiologia do Solo , Tibet
6.
Environ Sci Technol ; 56(14): 10483-10493, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35748652

RESUMO

Warming-induced permafrost thaw may stimulate soil respiration (Rs) and thus cause a positive feedback to climate warming. However, due to the limited in situ observations, it remains unclear about how Rs and its autotrophic (Ra) and heterotrophic (Rh) components change upon permafrost thaw. Here we monitored variations in Rs and its components along a permafrost thaw sequence on the Tibetan Plateau, and explored the potential linkage of Rs components (i.e., Ra and Rh) with biotic (e.g., plant functional traits and soil microbial diversity) and abiotic factors (e.g., substrate quality). We found that Ra and Rh exhibited divergent responses to permafrost collapse: Ra increased with the time of thawing, while Rh exhibited a hump-shaped pattern along the thaw sequence. We also observed different drivers of thaw-induced changes in the ratios of Ra:Rs and Rh:Rs. Except for soil water status, plant community structure, diversity, and root properties explained the variation in Ra:Rs ratio, soil substrate quality and microbial diversity were key factors associated with the dynamics of Rh:Rs ratio. Overall, these findings demonstrate divergent patterns and drivers of Rs components as permafrost thaw prolongs, which call for considerations in Earth system models for better forecasting permafrost carbon-climate feedback.


Assuntos
Pergelissolo , Processos Autotróficos , Ciclo do Carbono , Respiração , Solo/química
7.
Ecol Lett ; 24(5): 1018-1028, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33709557

RESUMO

Elucidating the processes underlying the persistence of soil organic matter (SOM) is a prerequisite for projecting soil carbon feedback to climate change. However, the potential role of plant carbon input in regulating the multi-layer SOM preservation over broad geographic scales remains unclear. Based on large-scale soil radiocarbon (∆14 C) measurements on the Tibetan Plateau, we found that plant carbon input was the major contributor to topsoil carbon destabilisation despite the significant associations of topsoil ∆14 C with climatic and mineral variables as well as SOM chemical composition. By contrast, mineral protection by iron-aluminium oxides and cations became more important in preserving SOM in deep soils. These regional observations were confirmed by a global synthesis derived from the International Soil Radiocarbon Database (ISRaD). Our findings illustrate different effects of plant carbon input on SOM persistence across soil layers, providing new insights for models to better predict multi-layer soil carbon dynamics under changing environments.


Assuntos
Carbono , Solo , Minerais , Plantas , Microbiologia do Solo
8.
Glob Chang Biol ; 27(14): 3218-3229, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33336478

RESUMO

Permafrost thaw could trigger the release of greenhouse gases through microbial decomposition of the large quantities of carbon (C) stored within frozen soils. However, accurate evaluation of soil C emissions from thawing permafrost is still a big challenge, partly due to our inadequate understanding about the response of microbial communities and their linkage with soil C release upon permafrost thaw. Based on a large-scale permafrost sampling across 24 sites on the Tibetan Plateau, we employed meta-genomic technologies (GeoChip and Illumina MiSeq sequencing) to explore the impacts of permafrost thaw (permafrost samples were incubated for 11 days at 5°C) on microbial taxonomic and functional communities, and then conducted a laboratory incubation to investigate the linkage of microbial taxonomic and functional diversity with soil C release after permafrost thaw. We found that bacterial and fungal α diversity decreased, but functional gene diversity and the normalized relative abundance of C degradation genes increased after permafrost thaw, reflecting the rapid microbial response to permafrost thaw. Moreover, both the microbial taxonomic and functional community structures differed between the thawed permafrost and formerly frozen soils. Furthermore, soil C release rate over five month incubation was associated with microbial functional diversity and C degradation gene abundances. By contrast, neither microbial taxonomic diversity nor community structure exhibited any significant effects on soil C release over the incubation period. These findings demonstrate that permafrost thaw could accelerate C emissions by altering the function potentials of microbial communities rather than taxonomic diversity, highlighting the crucial role of microbial functional genes in mediating the responses of permafrost C cycle to climate warming.


Assuntos
Pergelissolo , Carbono , Ciclo do Carbono , Solo , Microbiologia do Solo
9.
Environ Sci Technol ; 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34310124

RESUMO

Permafrost thaw could increase methane (CH4) emissions, which largely depends on CH4 production driven by methanogenic archaea. However, large-scale evidence regarding key methanogenic taxa and their relative importance to abiotic factors in mediating methanogenesis remains limited. Here, we explored the methanogenic community, potential CH4 production and its determinants in the active layer and permafrost deposits based on soil samples acquired from 12 swamp meadow sites along a ∼1000 km permafrost transect on the Tibetan Plateau. Our results revealed lower CH4 production potential, mcrA gene abundance, and richness in the permafrost layer than those in the active layer. CH4 production potential in both soil layers was regulated by microbial and abiotic factors. Of the microbial properties, marker OTUs, rather than the abundance and diversity of methanogens, stimulated CH4 production potential. Marker OTUs differed between the two soil layers with hydrogenotrophic Methanocellales and facultative acetoclastic Methanosarcina predominant in regulating CH4 production potential in the permafrost and active layer, respectively. Besides microbial drivers, CH4 production potential increased with the carbon/nitrogen (C/N) ratio in both soil layers and was also stimulated by soil moisture in the permafrost layer. These results provide empirical evidence for model improvements to better predict permafrost carbon feedback to climate warming.

10.
Glob Chang Biol ; 26(9): 5290-5302, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32506764

RESUMO

It had been suggested that permafrost thaw could promote frozen nitrogen (N) release and modify microbial N transformation rates, which might alter soil N availability and then regulate ecosystem functions. However, the current understanding of this issue is confined to limited observations in the Arctic permafrost region, without any systematic measurements in other permafrost regions. Based on a large-scale field investigation along a 1,000 km transect and a laboratory incubation experiment with a 15 N pool dilution approach, this study provides the comprehensive evaluation of the permafrost N status, including the available N content and related N transformation rates, across the Tibetan alpine permafrost region. In contrast to the prevailing view, our results showed that the Tibetan alpine permafrost had lower available N content and net N mineralization rate than the active layer. Moreover, the permafrost had lower gross rates of N mineralization, microbial immobilization and nitrification than the active layer. Our results also revealed that the dominant drivers of the gross N mineralization and microbial immobilization rates differed between the permafrost and the active layer, with these rates being determined by microbial properties in the permafrost while regulated by soil moisture in the active layer. In contrast, soil gross nitrification rate was consistently modulated by the soil NH 4 + content in both the permafrost and the active layer. Overall, patterns and drivers of permafrost N pools and transformation rates observed in this study offer new insights into the potential N release upon permafrost thaw and provide important clues for Earth system models to better predict permafrost biogeochemical cycles under a warming climate.


Assuntos
Pergelissolo , Regiões Árticas , Ecossistema , Nitrogênio/análise , Solo , Tibet
11.
Environ Sci Technol ; 53(24): 14243-14252, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31718180

RESUMO

Methane (CH4) dynamics across permafrost regions is critical in determining the magnitude and direction of permafrost carbon (C)-climate feedback. However, current studies are mainly derived from the Arctic area, with limited evidence from other permafrost regions. By combining large-scale laboratory incubation across 51 sampling sites with machine learning techniques and bootstrap analysis, here, we determined regional patterns and dominant drivers of CH4 oxidation potential in alpine steppe and meadow (CH4 sink areas) and CH4 production potential in swamp meadow (CH4 source areas) across the Tibetan alpine permafrost region. Our results showed that both CH4 oxidation potential (in alpine steppe and meadow) and CH4 production potential (in swamp meadow) exhibited large variability across various sampling sites, with the median value being 8.7, 9.6, and 11.5 ng g-1 dry soil h-1, respectively. Our results also revealed that methanotroph abundance and soil moisture were two dominant factors regulating CH4 oxidation potential, whereas CH4 production potential was mainly affected by methanogen abundance and the soil organic carbon content, with functional gene abundance acting as the best explaining variable. These results highlight the crucial role of microbes in regulating CH4 dynamics, which should be considered when predicting the permafrost C cycle under future climate scenarios.


Assuntos
Pergelissolo , Regiões Árticas , Carbono , Metano , Solo , Tibet
12.
Environ Sci Technol ; 53(8): 4150-4160, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30892031

RESUMO

Nitrogen (N) status has a great impact on methane (CH4) consumption by soils. Modeling studies predicting soil CH4 consumption assume a linear relationship between CH4 uptake and N addition rate. Here, we present evidence that a nonlinear relationship may better characterize changes in soil CH4 uptake with increasing N additions. By conducting a field experiment with eight N-input levels in a Tibetan alpine steppe, we observed a unimodal relationship; CH4 uptake increased at low to medium N levels but declined at high N levels. Environmental and microbial properties jointly determined this response pattern. The generality of the unimodal trend was further validated by two independent analyses: (i) we examined soil CH4 uptake across at least five N-input levels in upland ecosystems across China. A unimodal CH4 uptake-N addition rate relationship was observed in 3 out of 4 cases; and (ii) we performed a meta-analysis to explore the N-induced changes in soil CH4 uptake with increasing N additions across global upland ecosystems. Results showed that the changes in CH4 uptake exhibited a quadratic correlation with N addition rate. Overall, we suggest that the unimodal relationship should be considered in biogeochemistry models for accurately predicting soil CH4 consumption under global N enrichment.


Assuntos
Metano , Solo , China , Ecossistema , Nitrogênio
13.
Environ Sci Technol ; 52(16): 9162-9169, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29984572

RESUMO

Permafrost thawing may release nitrous oxide (N2O) due to large N storage in cold environments. However, N2O emissions from permafrost regions have received little attention to date, particularly with respect to the underlying microbial mechanisms. We examined the magnitude of N2O fluxes following upland thermokarst formation along a 20-year thaw sequence within a thermo-erosion gully in a Tibetan swamp meadow. We also determined the importance of environmental factors and the related microbial functional gene abundance. Our results showed that permafrost thawing led to a mass release of N2O in recently collapsed sites (3 years ago), particularly in exposed soil patches, which presented post-thaw emission rates equivalent to those from agricultural and tropical soils. In addition to abiotic factors, soil microorganisms exerted significant effects on the variability in the N2O emissions along the thaw sequence and between vegetated and exposed patches. Overall, our results demonstrate that upland thermokarst formation can lead to enhanced N2O emissions, and that the global warming potential (GWP) of N2O at the thermokarst sites can reach 60% of the GWP of CH4 (vs ∼6% in control sites), highlighting the potentially strong noncarbon (C) feedback to climate warming in permafrost regions.


Assuntos
Pergelissolo , Agricultura , Aquecimento Global , Óxido Nitroso , Solo
14.
Environ Sci Technol ; 52(3): 1244-1252, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29276825

RESUMO

Permafrost thaw alters the physical and environmental conditions of soil and may thus cause a positive feedback to climate warming through increased methane emissions. However, the current knowledge of methane emissions following thermokarst development is primarily based on expanding lakes and wetlands, with upland thermokarst being studied less often. In this study, we monitored the methane emissions during the peak growing seasons of two consecutive years along a thaw sequence within a thermo-erosion gully in a Tibetan swamp meadow. Both years had consistent results, with the early and midthaw stages (3 to 12 years since thaw) exhibiting low methane emissions that were similar to those in the undisturbed meadow, while the emissions from the late thaw stage (20 years since thaw) were 3.5 times higher. Our results also showed that the soil water-filled pore space, rather than the soil moisture per se, in combination with the sand content, were the main factors that caused increased methane emissions. These findings differ from the traditional view that upland thermokarst could reduce methane emissions owing to the improvement of drainage conditions, suggesting that upland thermokarst development does not always result in a decrease in methane emissions.


Assuntos
Pergelissolo , Lagos , Metano , Solo , Tibet
15.
Glob Chang Biol ; 22(8): 2688-701, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26913840

RESUMO

The permafrost organic carbon (OC) stock is of global significance because of its large pool size and the potential positive feedback to climate warming. However, due to the lack of systematic field observations and appropriate upscaling methodologies, substantial uncertainties exist in the permafrost OC budget, which limits our understanding of the fate of frozen carbon in a warming world. In particular, the lack of comprehensive estimates of OC stocks across alpine permafrost means that current knowledge on this issue remains incomplete. Here, we evaluated the pool size and spatial variations of permafrost OC stock to 3 m depth on the Tibetan Plateau by combining systematic measurements from a substantial number of pedons (i.e. 342 three-metre-deep cores and 177 50-cm-deep pits) with a machine learning technique (i.e. support vector machine, SVM). We also quantified uncertainties in permafrost carbon budget by conducting Monte Carlo simulations. Our results revealed that the combination of systematic measurements with the SVM model allowed spatially explicit estimates to be made. The OC density (OC amount per unit area, OCD) exhibited a decreasing trend from the south-eastern to the north-western plateau, with the exception that OCD in the swamp meadow was substantially higher than that in surrounding regions. Our results also demonstrated that Tibetan permafrost stored a large amount of OC in the top 3 m, with the median OC pool size being 15.31 Pg C (interquartile range: 13.03-17.77 Pg C). 44% of OC occurred in deep layers (i.e. 100-300 cm), close to the proportion observed across the northern circumpolar permafrost region. The large carbon pool size together with significant permafrost thawing suggests a risk of carbon emissions and positive climate feedback across the Tibetan alpine permafrost region.


Assuntos
Carbono/análise , Pergelissolo/química , Clima , Pradaria , Tibet
16.
Nat Commun ; 15(1): 5920, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004662

RESUMO

Permafrost, characterized by its frozen soil, serves as a unique habitat for diverse microorganisms. Understanding these microbial communities is crucial for predicting the response of permafrost ecosystems to climate change. However, large-scale evidence regarding stratigraphic variations in microbial profiles remains limited. Here, we analyze microbial community structure and functional potential based on 16S rRNA gene amplicon sequencing and metagenomic data obtained from an ∼1000 km permafrost transect on the Tibetan Plateau. We find that microbial alpha diversity declines but beta diversity increases down the soil profile. Microbial assemblages are primarily governed by dispersal limitation and drift, with the importance of drift decreasing but that of dispersal limitation increasing with soil depth. Moreover, genes related to reduction reactions (e.g., ferric iron reduction, dissimilatory nitrate reduction, and denitrification) are enriched in the subsurface and permafrost layers. In addition, microbial groups involved in alternative electron accepting processes are more diverse and contribute highly to community-level metabolic profiles in the subsurface and permafrost layers, likely reflecting the lower redox potential and more complicated trophic strategies for microorganisms in deeper soils. Overall, these findings provide comprehensive insights into large-scale stratigraphic profiles of microbial community structure and functional potentials in permafrost regions.


Assuntos
Metagenômica , Microbiota , Pergelissolo , RNA Ribossômico 16S , Microbiologia do Solo , Pergelissolo/microbiologia , Tibet , RNA Ribossômico 16S/genética , Microbiota/genética , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Solo/química , Metagenoma , Ecossistema , Mudança Climática , Biodiversidade , Filogenia
17.
Sci China Life Sci ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38951429

RESUMO

Our knowledge on permafrost carbon (C) cycle is crucial for understanding its feedback to climate warming and developing nature-based solutions for mitigating climate change. To understand the characteristics of permafrost C cycle on the Tibetan Plateau, the largest alpine permafrost region around the world, we summarized recent advances including the stocks and fluxes of permafrost C and their responses to thawing, and depicted permafrost C dynamics within this century. We find that this alpine permafrost region stores approximately 14.1 Pg (1 Pg=1015 g) of soil organic C (SOC) in the top 3 m. Both substantial gaseous emissions and lateral C transport occur across this permafrost region. Moreover, the mobilization of frozen C is expedited by permafrost thaw, especially by the formation of thermokarst landscapes, which could release significant amounts of C into the atmosphere and surrounding water bodies. This alpine permafrost region nevertheless remains an important C sink, and its capacity to sequester C will continue to increase by 2100. For future perspectives, we would suggest developing long-term in situ observation networks of C stocks and fluxes with improved temporal and spatial coverage, and exploring the mechanisms underlying the response of ecosystem C cycle to permafrost thaw. In addition, it is essential to improve the projection of permafrost C dynamics through in-depth model-data fusion on the Tibetan Plateau.

18.
Expert Rev Gastroenterol Hepatol ; 17(4): 385-394, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36922401

RESUMO

AIMS: To investigate the prevalence of diabetes mellitus (DM) in acute pancreatitis (AP) patients and to explore the extent to which inflammatory stress affects plasma glucose (PG) levels in AP patients. METHODS: A retrospective analysis of 2163 AP patients was performed. The PG differences among AP patients under differing pancreatic necrosis conditions and inflammation severity were compared. Receiver operating characteristic curves were used to assess whether fasting PG in the inflammatory stage of AP might be used for DM screening. RESULTS: The overall DM prevalence was 19.97% in AP patients, 32.41% of whom had newly diagnosed DM (based on HbA1c levels in patients who self-reported no DM). The DM prevalence was 46.93% in hyperlipidemic AP patients, 44.14% of whom had newly diagnosed DM. In patients with and without pancreatic necrosis, the optimal PG thresholds for the screening of newly diagnosed DM were 10.40 mmol/L and 8.21 mmol/L, respectively, with an AUC of 0.959 ± 0.034 (P < 0.001) and 0.972 ± 0.006 (P < 0.001), respectively. CONCLUSIONS: For hospitalized AP patients and fasting PG levels exceeding 10 mmol/L (with necrosis) or 8 mmol/L (without necrosis) (P < 0.001), HbA1c testing is recommended to investigate the presence of comorbid undiagnosed DM.


Assuntos
Diabetes Mellitus , Pancreatite Necrosante Aguda , Humanos , Hemoglobinas Glicadas , Relevância Clínica , Doença Aguda , Estudos Retrospectivos , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiologia , Glicemia/análise
19.
Front Neurosci ; 17: 1121490, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860621

RESUMO

Background: Ocular ischemic syndrome (OIS), attributable to chronic hypoperfusion caused by marked carotid stenosis, is one of the important factors that cause ocular neurodegenerative diseases such as optic atrophy. The current study aimed to detect blood flow perfusion in a visual pathway by arterial spin labeling (ASL) and magnetic resonance imaging (MRI) for the differential diagnosis of OIS. Methods: This diagnostic, cross-sectional study at a single institution was performed to detect blood flow perfusion in a visual pathway based on 3D pseudocontinuous ASL (3D-pCASL) using 3.0T MRI. A total of 91 participants (91 eyes) consisting of 30 eyes with OIS and 61 eyes with noncarotid artery stenosis-related retinal vascular diseases (39 eyes with diabetic retinopathy and 22 eyes with high myopic retinopathy) were consecutively included. Blood flow perfusion values in visual pathways derived from regions of interest in ASL images, including the retinal-choroidal complex, the intraorbital segments of the optic nerve, the tractus optics, and the visual center, were obtained and compared with arm-retinal circulation time and retinal circulation time derived from fundus fluorescein angiography (FFA). Receiver operating characteristic (ROC) curve analyses and the intraclass correlation coefficient (ICC) were performed to evaluate the accuracy and consistency. Results: Patients with OIS had the lowest blood flow perfusion values in the visual pathway (all p < 0.05). The relative intraorbital segments of optic nerve blood flow values at post-labeling delays (PLDs) of 1.5 s (area under the curve, AUC = 0.832) and the relative retinal-choroidal complex blood flow values at PLDs of 2.5 s (AUC = 0.805) were effective for the differential diagnosis of OIS. The ICC of the blood flow values derived from the retinal-choroidal complex and the intraorbital segments of the optic nerve between the two observers showed satisfactory concordance (all ICC > 0.932, p < 0.001). The adverse reaction rates of ASL and FFA were 2.20 and 3.30%, respectively. Conclusion: 3D-pCASL showed that the participants with OIS had lower blood flow perfusion values in the visual pathway, which presented satisfactory accuracy, reproducibility, and safety. It is a noninvasive and comprehensive differential diagnostic tool to assess blood flow perfusion in a visual pathway for the differential diagnosis of OIS.

20.
Nat Commun ; 14(1): 3121, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253726

RESUMO

Understanding methane (CH4) emission from thermokarst lakes is crucial for predicting the impacts of abrupt thaw on the permafrost carbon-climate feedback. However, observational evidence, especially from high-altitude permafrost regions, is still scarce. Here, by combining field surveys, radio- and stable-carbon isotopic analyses, and metagenomic sequencing, we present multiple characteristics of CH4 emissions from 120 thermokarst lakes in 30 clusters along a 1100 km transect on the Tibetan Plateau. We find that thermokarst lakes have high CH4 emissions during the ice-free period (13.4 ± 1.5 mmol m-2 d-1; mean ± standard error) across this alpine permafrost region. Ebullition constitutes 84% of CH4 emissions, which are fueled primarily by young carbon decomposition through the hydrogenotrophic pathway. The relative abundances of methanogenic genes correspond to the observed CH4 fluxes. Overall, multiple parameters obtained in this study provide benchmarks for better predicting the strength of permafrost carbon-climate feedback in high-altitude permafrost regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA