Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int Microbiol ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129035

RESUMO

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts that engage in crucial interactions with plants, playing a vital role in grassland ecology. Our study focuses on the pioneer plant Agropyron cristatum, and we collected soil samples from four degraded grasslands in Yudaokou to investigate the response of community composition to the succession of degraded grasslands. We measured the vegetation status, soil physical and chemical properties, AMF colonization, and spore density in different degraded grasslands. High-throughput sequencing was employed to analyze AMF in soil samples. Correlations among community composition, soil characteristics, and plant factors were studied using principal component and regression analyses. The distribution of AMF in grasslands exhibited variation with different degrees of degradation, with Glomus, Scutellospora, and Diversispora being the dominant genera. The abundance of dominant genera in AMF also varied, showing a gradual increase in the relative abundance of the genus Diversispora with higher degradation levels. AMF diversity decreased from 27.7% to 12.4% throughout the degradation process. Among 180 samples of Agropyron cristatum plants, AMF hyphae and vesicles displayed the highest infection status in non-degraded grasslands and the lowest in severely degraded ones. Peak AMF spore production occurred in August, with maximum values in the 0-10-cm soil layer, and the highest spore densities were found in lightly degraded grasslands. Apart from pH, soil factors exhibited a positive correlation with AMF infection during grassland degradation. Furthermore, changes in AMF community composition were jointly driven by vegetation and soil characteristics, with vegetation coverage and soil organic carbon significantly impacting AMF distribution. Significant differences in AMF variables (spore number and diversity index) were also observed at different soil depths. Grassland successional degradation significantly influences AMF community structure and composition. Our future focus will be on understanding response mechanisms and implementing improvement methods for AMF during grassland degradation and subsequent restoration efforts.

2.
Can J Microbiol ; 70(3): 70-85, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38096505

RESUMO

The grasslands in North China are rich in fungal resources. However, the knowledge of the structure and function of fungal communities and the role of microbial communities in vegetation restoration and succession are limited. Thus, we used an Illumina HiSeq PE250 high-throughput sequencing platform to study the changing characteristics of soil fungal communities in degraded grasslands, which were categorized as non-degraded (ND), lightly degraded, moderately degraded, and severely degraded (SD). Moreover, a correlation analysis between soil physical and chemical properties and fungal communities was completed. The results showed that the number of plant species, vegetation coverage, aboveground biomass, and diversity index decreased significantly with increasing degradation, and there were significant differences in the physical and chemical properties of the soil among the different degraded grasslands. The dominant fungal phyla in the degraded grassland were as follows: Ascomycota, 44.88%-65.03%; Basidiomycota, 12.68%-29.91%; and unclassified, 5.51%-16.91%. The dominant fungi were as follows: Mortierella, 6.50%-11.41%; Chaetomium, 6.71%-11.58%; others, 25.95%-36.14%; and unclassified, 25.56%-53.0%. There were significant differences in the microbial Shannon-Wiener and Chao1 indices between the ND and degraded meadows, and the composition and diversity of the soil fungal community differed significantly as the meadows continued to deteriorate. The results showed that pH was the most critical factor affecting soil microbial and fungal communities in SD grasslands, whereas soil microbial and fungal communities in ND grasslands were mainly affected by water content and other environmental factors.


Assuntos
Microbiota , Micobioma , Pradaria , China , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA