RESUMO
Prostate cancer (PCa) is threatening the health of millions of people, the pathological mechanism of prostate cancer has not been fully elaborated, and needs to be further explored. Here, we found that the expression of DUSP26 is dramatically suppressed, and a positive connection of its expression with PCa prognosis was also observed. In vitro, overexpression of DUSP26 significantly inhibited the proliferative, migrative, and invasive capacities of PC3 cells, DUSP26 silencing presented opposite results. Tumor formation experiments in subcutaneous nude mice demonstrated that DUSP26 overexpression could significantly suppress PC3 growth in vivo. Moreover, the mechanism of DUSP26 gene and PCa was discovered by RNA-Seq analysis. We found that DUSP26 significantly inhibited MAPK signaling pathway activation, and further experiments displayed that DUSP26 could impair TAK1, p38, and JNK phosphorylation. Interestingly, treatment with the TAK1 inhibitor (iTAK1) attenuated the effect of DUSP26 on PC3 cells. Together, these results suggested that DUSP26 may serve as a novel therapeutic target for PC3 cell type PCa, the underlying mechanism may be through TAK1-JNK/p38 signaling.
Assuntos
Movimento Celular , Proliferação de Células , Fosfatases de Especificidade Dupla , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Fosfatases da Proteína Quinase Ativada por Mitógeno , Neoplasias da Próstata , Humanos , Masculino , Proliferação de Células/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Animais , Movimento Celular/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Camundongos , Invasividade Neoplásica , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/genética , Células PC-3 , Camundongos Endogâmicos BALB CRESUMO
Through Smad3-dependent signalings, transforming growth factor-ß (TGF-ß) suppresses the development, maturation, cytokine productions and cytolytic functions of NK cells in cancer. Silencing Smad3 remarkably restores the cytotoxicity of NK-92 against cancer in TGF-ß-rich microenvironment, but its effects on the immunoregulatory functions of NK cells remain obscure. In this study, we identified Smad3 functioned as a transcriptional repressor for CSF2 (GM-CSF) in NK cells. Therefore, disrupting Smad3 largely mitigated TGF-ß-mediated suppression on GM-CSF production by NK cells. Furthermore, silencing GM-CSF in Smad3 knockout NK cells substantially impaired their anti-lung carcinoma effects. In-depth study demonstrated that NK-derived GM-CSF strengthened T cell immune responses by stimulating dendritic cell differentiation and M1 macrophage polarization. Meanwhile, NK-derived GM-CSF promoted the survival of neutrophils, which in turn facilitated the terminal maturation of NK cells, and subsequently boosted NK-cell mediated cytotoxicity against lung carcinoma. Thus, Smad3-silenced NK-92 (NK-92-S3KD) may serve as a promising immunoadjuvant therapy with clinical translational value given its robust cytotoxicity against malignant cells and immunostimulatory functions to reinforce the therapeutic effects of other immunotherapies.
Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Células Matadoras Naturais , Neoplasias Pulmonares , Proteína Smad3 , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Proteína Smad3/metabolismo , Proteína Smad3/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Diferenciação Celular , Macrófagos/metabolismo , Macrófagos/imunologia , Transdução de SinaisRESUMO
Bacterial pathogen identification, which is critical for human health, has historically relied on culturing organisms from clinical specimens. More recently, the application of machine learning (ML) to whole-genome sequences (WGSs) has facilitated pathogen identification. However, relying solely on genetic information to identify emerging or new pathogens is fundamentally constrained, especially if novel virulence factors exist. In addition, even WGSs with ML pipelines are unable to discern phenotypes associated with cryptic genetic loci linked to virulence. Here, we set out to determine if ML using phenotypic hallmarks of pathogenesis could assess potential pathogenic threat without using any sequence-based analysis. This approach successfully classified potential pathogenetic threat associated with previously machine-observed and unobserved bacteria with 99% and 85% accuracy, respectively. This work establishes a phenotype-based pipeline for potential pathogenic threat assessment, which we term PathEngine, and offers strategies for the identification of bacterial pathogens.
Assuntos
Bactérias , Genoma Bacteriano , Aprendizado de Máquina , Fatores de Virulência , Sequenciamento Completo do Genoma , Bactérias/genética , Bactérias/patogenicidade , Fenótipo , Virulência/genética , Fatores de Virulência/genéticaRESUMO
The occurrence and development of cancer involves the participation of many factors, its pathological mechanism is far more complicated than other diseases, and the treatment is also extremely difficult. Although the treatment of cancer adopts diversified methods to improve the survival rate and quality of life of patients, but the drug resistance, metastasis and recurrence of cancer cause most patients to fail in treatment. Therefore, exploring new molecular targets in cancer pathology is of great value for improving and preventing the treatment of cancer. Fortunately, the P2Y2 purinergic receptor (P2Y2 receptor) in the G protein-coupled receptor family has been recognized for regulating cancer progression. Agonist activated P2Y2 receptor has a certain contribution to the growth and metastasis of tumor cells. P2Y2 receptor activation participates in cancer progression by regulating calcium ion channels and classical signaling pathways (such as PLC-PKC and PI3K/AKT). It has the effect of anti-tumor therapy by inhibiting the activation of P2Y2 receptor (the use of antagonist) and reducing its expression. Therefore, in this article, we focus on the expression patterns of P2Y2 receptor in cancer and potential pharmacological targets as anti-cancer treatments.
RESUMO
BACKGROUND: The post COVID-19 health condition of Chinese residents infected with Omicron is not clear after the change of epidemic prevention policies. This study aimed to clarify the epidemiology and associated factors about health status of rehabilitation patients. METHODS: A quick questionnaire study based on C19-YRSm was conducted in mainland China through internet from May 1, 2023, to May 7, 2023. Chinese native speakers infected with Omicron variant agreed to participate were included. Persisting symptom and living habits were simultaneously inquired. Logistic regression analysis was used to identify the associated factors. RESULTS: In this study 753 individuals were included. Of whom 57.90% were males, 89.38% did not seek medical service, 99.47% recovered within less than 120 days. Breathlessness (47.68%), cognitive impairment (44.89%), Anxiety/mood changes (33.20%), pain/discomfort (32.94%), fatigue or tiredness not improved by rest (32.27%) and post-exertional malaise (30.01%) were the top reported key symptoms. Less than 10% respondents reported functional limitations. The prevalence of fever was reported greater than that of other symptoms, with dry eyes at 14.87%, appetite change at 14.34%, and hair loss at 12.22%. Middle age (OR: 2.353, 95%CI: 1.171 ~ 4.729), underlying diseases (OR: 2.293, 95%CI: 1.216 ~ 4.324), severe key symptom (OR: 6.168, 95%CI: 1.376 ~ 27.642) and at least one other symptom (OR: 1.847, 95%CI: 1.225 ~ 2.718)during the recovery were the risk factors of poor overall health after infection (current overall health score <8; 74.10%), while daily exercise in recovery period (OR: 0.457, 95%CI: 0.229 ~ 0.913), a low-fat diet (OR: 0.600, 95%CI: 0.401 ~ 0.898) and the recovery time from 2 to 4 months (OR: 0.639, 95%CI: 0.445 ~ 0.918) were the protective factors. CONCLUSION: This is the first time to use the C19-YRSm scale to evaluate the health status in China. The study revealed prevalence of persistent symptoms within 120 days after Omicron onset.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , China/epidemiologia , Masculino , Feminino , Estudos Transversais , Adulto , Pessoa de Meia-Idade , Inquéritos e Questionários , Adulto Jovem , Idoso , Nível de Saúde , Adolescente , PandemiasRESUMO
Monitoring hydrogen sulfide (H2S) in living organisms is very important because H2S acts as a regulator in many physiological and pathological processes. Upregulation of endogenous H2S concentration has been shown to be closely related to the occurrence and development of tumors, atherosclerosis, neurodegenerative diseases and diabetes. Herin, a novel fluorescent probe HND with aggregation-induced emission was designed. Impressively, HND exhibited a high selectivity, fast response (1 min) and low detection limit (0.61 µM) for H2S in PBS buffer (10 mM, pH = 7.42). Moreover, the reaction mechanism between HND and H2S was conducted by Job's plot, HR-MS, and DFT. In particular, HND was successfully employed to detect H2S in HeLa cells.
Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/análise , Humanos , Corantes Fluorescentes/química , Células HeLa , Imagem Óptica/métodos , Espectrometria de Fluorescência/métodos , Limite de DetecçãoRESUMO
Brown planthopper (BPH, Nilaparvata lugens), a highly destructive insect pest, poses a serious threat to rice (Oryza sativa) production worldwide. Jasmonates are key phytohormones that regulate plant defences against BPH; however, the molecular link between jasmonates and BPH responses in rice remains largely unknown. Here, we discovered a Poaceae-specific metabolite, mixed-linkage ß-1,3;1,4-d-glucan (MLG), which contributes to jasmonate-mediated BPH resistance. MLG levels in rice significantly increased upon BPH attack. Overexpressing OsCslF6, which encodes a glucan synthase that catalyses MLG biosynthesis, significantly enhanced BPH resistance and cell wall thickness in vascular bundles, whereas knockout of OsCslF6 reduced BPH resistance and vascular wall thickness. OsMYC2, a master transcription factor of jasmonate signalling, directly controlled the upregulation of OsCslF6 in response to BPH feeding. The AT-rich domain of the OsCslF6 promoter varies in rice varieties from different locations and natural variants in this domain were associated with BPH resistance. MLG-derived oligosaccharides bound to the plasma membrane-anchored LECTIN RECEPTOR KINASE1 OsLecRK1 and modulated its activity. Thus, our findings suggest that the OsMYC2-OsCslF6 module regulates pest resistance by modulating MLG production to enhance vascular wall thickness and OsLecRK1-mediated defence signalling during rice-BPH interactions.
Assuntos
Hemípteros , Oryza , Animais , Glucanos/metabolismo , Oryza/genética , Oryza/metabolismo , PoaceaeRESUMO
In eukaryotes, autophagy maintains cellular homeostasis by recycling cytoplasmic components. The autophagy-related proteins (ATGs) ATG1 and ATG13 form a protein kinase complex that regulates autophagosome formation; however, mechanisms regulating ATG1 and ATG13 remain poorly understood. Here, we show that, under different nutrient conditions, the RING-type E3 ligases SEVEN IN ABSENTIA OF ARABIDOPSIS THALIANA1 (SINAT1), SINAT2, and SINAT6 control ATG1 and ATG13 stability and autophagy dynamics by modulating ATG13 ubiquitylation in Arabidopsis (Arabidopsis thaliana). During prolonged starvation and recovery, ATG1 and ATG13 were degraded through the 26S proteasome pathway. TUMOR NECROSIS FACTOR RECEPTOR ASSOCIATED FACTOR1a (TRAF1a) and TRAF1b interacted in planta with ATG13a and ATG13b and required SINAT1 and SINAT2 to ubiquitylate and degrade ATG13s in vivo. Moreover, lysines K607 and K609 of ATG13a protein contributed to K48-linked ubiquitylation and destabilization, and suppression of autophagy. Under starvation conditions, SINAT6 competitively interacted with ATG13 and induced autophagosome biogenesis. Furthermore, under starvation conditions, ATG1 promoted TRAF1a protein stability in vivo, suggesting feedback regulation of autophagy. Consistent with ATGs functioning in autophagy, the atg1a atg1b atg1c triple knockout mutants exhibited premature leaf senescence, hypersensitivity to nutrient starvation, and reduction in TRAF1a stability. Therefore, these findings demonstrate that SINAT family proteins facilitate ATG13 ubiquitylation and stability and thus regulate autophagy.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Autofagia/fisiologia , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/metabolismo , Proteínas de Membrana , Proteínas Mitocondriais , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral , Ubiquitina-Proteína Ligases/genética , UbiquitinaçãoRESUMO
To investigate the protective effect and the potential mechanism of leonurine(Leo) against erastin-induced ferroptosis in human renal tubular epithelial cells(HK-2 cells), an in vitro erastin-induced ferroptosis model was constructed to detect the cell viability as well as the expressions of ferroptosis-related indexes and signaling pathway-related proteins. HK-2 cells were cultured in vitro, and the effects of Leo on the viability of HK-2 cells at 10, 20, 40, 60, 80 and 100 µmol·L~(-1) were examined by CCK-8 assay to determine the safe dose range of Leo administration. A ferroptosis cell model was induced by erastin, a common ferroptosis inducer, and the appropriate concentrations were screened. CCK-8 assay was used to detect the effects of Leo(20, 40, 80 µmol·L~(-1)) and positive drug ferrostatin-1(Fer-1, 1, 2 µmol·L~(-1)) on the viability of ferroptosis model cells, and the changes of cell morphology were observed by phase contrast microscopy. Then, the optimal concentration of Leo was obtained by Western blot for nuclear factor erythroid 2-related factor 2(Nrf2) activation, and transmission electron microscope was further used to detect the characteristic microscopic morphological changes during ferroptosis. Flow cytometry was performed to detect reactive oxygen species(ROS), and the level of glutathione(GSH) was measured using a GSH assay kit. The expressions of glutathione peroxidase 4(GPX4), p62, and heme oxygenase 1(HO-1) in each group were quantified by Western blot. RESULTS:: showed that Leo had no side effects on the viability of normal HK-2 cells in the concentration range of 10-100 µmol·L~(-1). The viability of HK-2 cells decreased as the concentration of erastin increased, and 5 µmol·L~(-1) erastin significantly induced ferroptosis in the cells. Compared with the model group, Leo dose-dependently increased cell via-bility and improved cell morphology, and 80 µmol·L~(-1) Leo promoted the translocation of Nrf2 from the cytoplasm to the nucleus. Further studies revealed that Leo remarkably alleviated the characteristic microstructural damage of ferroptosis cells caused by erastin, inhibited the release of intracellular ROS, elevated GSH and GPX4, promoted the nuclear translocation of Nrf2, and significantly upregulated the expression of p62 and HO-1 proteins. In conclusion, Leo exerted a protective effect on erastin-induced ferroptosis in HK-2 cells, which might be associated with its anti-oxidative stress by activating p62/Nrf2/HO-1 signaling pathway.
Assuntos
Ferroptose , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Células Epiteliais/metabolismo , GlutationaRESUMO
PURPOSE: To assess the predictive value of geometric parameters for type Ia endoleak (T1AEL) after endovascular abdominal aortic aneurysm repair and to determine the range of optimal oversizing ratio (OSR) in patients with an elliptical cross-section of the aneurysm neck. MATERIALS AND METHODS: A propensity score-matched case-control study was conducted. Case patients were those who were diagnosed with T1AEL and control patients were those who did not have T1AEL after endovascular aneurysm repair during the period from 2012 to 2018. Geometric and oversizing parameters were compared based on both 2-dimensional (2D) and 3-dimensional measurements. Net reclassification improvement was used to measure the prediction increment of an elliptical model (major axis OSR, neck length, and severe neck angulation) compared with that of the conventional model (OSR 2D, neck length, and severe neck angulation). RESULTS: Nineteen case patients and 111 control patients were included. The median OSR 2D of patients with T1AEL was 17% (interquartile range, 15%-22%), but the median major axis OSR was only 7% (interquartile range, 5%-12%). For the geometric parameters, axis difference had the highest area under the curve (AUC) (0.74; 95% CI, 0.63-0.84) for predicting T1AEL. For the elliptical oversizing parameters, the major axis OSR had an AUC of 0.89 (95% CI, 0.78-0.97), with a cutoff value of 13%. The elliptical model had a higher discriminating ability for T1AEL than the conventional model (AUC 0.91 vs 0.86, respectively; P = .045), with an improved reclassification ability (net reclassification improvement, 27.93%; 95% CI, 19.22%-36.64%; P < .0001). CONCLUSIONS: Elliptical aneurysm neck cross-section, assessed by the difference between axis dimensions in the plane orthogonal to the centerline, was associated with an increased risk of T1AEL. The prescription of major axis oversizing of at least 13% can significantly reduce the risk of T1AEL formation in patients with an elliptical aneurysm neck.
Assuntos
Aneurisma da Aorta Abdominal , Implante de Prótese Vascular , Procedimentos Endovasculares , Aneurisma da Aorta Abdominal/complicações , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/cirurgia , Prótese Vascular/efeitos adversos , Implante de Prótese Vascular/efeitos adversos , Estudos de Casos e Controles , Endoleak/diagnóstico por imagem , Endoleak/etiologia , Procedimentos Endovasculares/efeitos adversos , Humanos , Desenho de Prótese , Estudos Retrospectivos , Fatores de Risco , Stents/efeitos adversos , Resultado do TratamentoRESUMO
BACKGROUND: This study is the first to assess the safety and therapeutic efficacy of vagus nerve stimulation (VNS) as an adjunctive treatment for Chinese patients suffering from treatment-resistant depression (TRD). METHODS: A total of seven patients with TRD underwent surgical implantation of a VNS device were followed over a 9-month period. The 24-item Hamilton Rating Scale for Depression (HAMD-24) and the 14-item Hamilton Anxiety Scale (HAMA) were used to assess depressive and anxiety symptoms, respectively. Neurocognitive function was measured with the Wechsler Adult Intelligence Scale (WAIS) and the Wechsler Memory Scale (WMS). RESULTS: After 3 months of treatment with VNS, the antidepressant response and remission rates were 42.9% and 28.6%, respectively. After 9 months of treatment with VNS, the response and remission rates increased to 85.7% and 57.1%, respectively. Significant time main effects were identified for HAMD-24 scores, HAMA scores, the WMS memory quotient, and the full intelligence quotients measured with the WAIS (all ps < 0.05). The most frequent adverse effects of VNS treatment were voice alteration (100%) and cough frequency increase (71.4%). CONCLUSION: This preliminary study indicated that adjunctive VNS was effective and safe in treating Chinese patients who were suffering from TRD, and its efficacy increased with time.Key pointsThere is positive evidence to support the role of VNS as an adjunctive treatment in Chinese patients with TRD.The antidepressant efficacy of adjunctive VNS for Chinese patients with TRD increased with time.The most frequent adverse effects of VNS treatment were voice alteration and cough frequency increase.
Assuntos
Estimulação do Nervo Vago , Adulto , Humanos , Estimulação do Nervo Vago/efeitos adversos , Depressão , Tosse/tratamento farmacológico , Resultado do Tratamento , Antidepressivos/uso terapêuticoRESUMO
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability, resulted from the silencing of the Fmr1 gene and the subsequent loss of fragile X mental retardation protein (FMRP). Spine dysgenesis and cognitive impairment have been extensively characterized in FXS; however, the underlying mechanism remains poorly understood. As an important regulator of spine maturation, intercellular adhesion molecule 5 (ICAM5) mRNA may be one of the targets of FMRP and involved in cognitive impairment in FXS. Here we show that in Fmr1 KO male mice, ICAM5 was excessively expressed during the late developmental stage, and its expression was negatively correlated with the expression of FMRP and positively related with the morphological abnormalities of dendritic spines. While in vitro reduction of ICAM5 normalized dendritic spine abnormalities in Fmr1 KO neurons, and in vivo knockdown of ICAM5 in the dentate gyrus rescued the impaired spatial and fear memory and anxiety-like behaviors in Fmr1 KO mice, through both granule cell and mossy cell with a relative rate of 1.32 ± 0.15. Furthermore, biochemical analyses showed direct binding of FMRP with ICAM5 mRNA, to the coding sequence of ICAM5 mRNA. Together, our study suggests that ICAM5 is one of the targets of FMRP and is implicated in the molecular pathogenesis of FXS. ICAM5 could be a therapeutic target for treating cognitive impairment in FXS.SIGNIFICANCE STATEMENT Fragile X syndrome (FXS) is characterized by dendritic spine dysgenesis and cognitive dysfunctions, while one of the FMRP latent targets, ICAM5, is well established for contributing both spine maturation and learning performance. In this study, we examined the potential link between ICAM5 mRNA and FMRP in FXS, and further investigated the molecular details and pathological consequences of ICAM5 overexpression. Our results indicate a critical role of ICAM5 in spine maturation and cognitive impairment in FXS and suggest that ICAM5 is a potential molecular target for the development of medication against FXS.
Assuntos
Disfunção Cognitiva/metabolismo , Espinhas Dendríticas/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Regulação da Expressão Gênica/fisiologia , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Disfunção Cognitiva/genética , Espinhas Dendríticas/patologia , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/genética , Masculino , Camundongos , Camundongos Knockout , Neurogênese/genéticaRESUMO
Patients with malignant glioma often suffered from depression, which leads to an increased risk of detrimental outcomes. Imipramine, an FDA-approved tricyclic antidepressant, has been commonly used to relieve depressive symptoms in the clinic. Recently, imipramine has been reported to participate in the suppression of tumour progression in several human cancers, including prostate cancer, colon cancer and lymphomas. However, the effect of imipramine on malignant glioma is largely unclear. Here, we show that imipramine significantly retarded proliferation of immortalized and primary glioma cells. Mechanistically, imipramine suppressed tumour proliferation by inhibiting yes-associated protein (YAP), a recognized oncogene in glioma, independent of Hippo pathway. In addition to inhibiting YAP transcription, imipramine also promoted the subcellular translocation of YAP from nucleus into cytoplasm. Consistently, imipramine administration significantly reduced orthotopic tumour progression and prolonged survival of tumour-bearing mice. Moreover, exogenous overexpression of YAP partially restored the inhibitory effect of imipramine on glioma progression. Most importantly, compared with imipramine or temozolomide (TMZ) monotherapy, combination therapy with imipramine and TMZ exhibited enhanced inhibitory effect on glioma growth both in vitro and in vivo, suggesting the synergism of both agents. In conclusion, we found that tricyclic antidepressant imipramine impedes glioma progression by inhibiting YAP. In addition, combination therapy with imipramine and TMZ may potentially serve as promising anti-glioma regimens, thus predicting a broad prospect of clinical application.
Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Imipramina/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Temozolomida/farmacologia , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Glioma , Humanos , Camundongos , Prognóstico , Resultado do Tratamento , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: The temporal relationship between SARS-CoV-2 and antibody production and clinical progression remained obscure. The aim of this study was to describe the viral kinetics of symptomatic patients with SARS-CoV-2 infection and identify factors that might contribute to prolonged viral shedding. METHODS: Symptomatic COVID-19 patients were enrolled in two hospitals in Wuhan, China, from whom the respiratory samples were collected and measured for viral loads consecutively by reverse transcriptase quantitative PCR (RT-qPCR) assay. The viral shedding pattern was delineated in relate to the epidemiologic and clinical information. RESULTS: Totally 2726 respiratory samples collected from 703 patients were quantified. The SARS-CoV-2 viral loads were at the highest level during the initial stage after symptom onset, which subsequently declined with time. The median time to SARS-CoV-2 negativity of nasopharyngeal test was 28 days, significantly longer in patients with older age (> 60 years old), female gender and those having longer interval from symptom onset to hospital admission (> 10 days). The multivariate Cox regression model revealed significant effect from older age (HR 0.73, 95% CI 0.55-0.96), female gender (HR 0.72, 95% CI 0.55-0.96) and longer interval from symptom onset to admission (HR 0.44, 95% CI 0.33-0.59) on longer time to SARS-CoV-2 negativity. The IgM antibody titer was significantly higher in the low viral loads group at 41-60 days after symptom onset. At the population level, the average viral loads were higher in early than in late outbreak periods. CONCLUSIONS: The prolonged viral shedding of SARS-CoV-2 was observed in COVID-19 patients, particularly in older, female and those with longer interval from symptom onset to admission.
Assuntos
COVID-19 , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , RNA Viral , SARS-CoV-2 , Carga Viral , Eliminação de Partículas ViraisRESUMO
Cyclophilin (Cyp) and Ca2+/calcineurin proteins are cellular components related to fungal morphogenesis and virulence; however, their roles in mediating the pathogenesis of Botrytis cinerea, the causative agent of gray mold on over 1000 plant species, remain largely unexplored. Here, we show that disruption of cyclophilin gene BcCYP2 did not impair the pathogen mycelial growth, osmotic and oxidative stress adaptation as well as cell wall integrity, but delayed conidial germination and germling development, altered conidial and sclerotial morphology, reduced infection cushion (IC) formation, sclerotial production and virulence. Exogenous cyclic adenosine monophosphate (cAMP) rescued the deficiency of IC formation of the ∆Bccyp2 mutants, and exogenous cyclosporine A (CsA), an inhibitor targeting cyclophilins, altered hyphal morphology and prevented host-cell penetration in the BcCYP2 harboring strains. Moreover, calcineurin-dependent (CND) genes are differentially expressed in strains losing BcCYP2 in the presence of CsA, suggesting that BcCyp2 functions in the upstream of cAMP- and Ca2+/calcineurin-dependent signaling pathways. Interestingly, during IC formation, expression of BcCYP2 is downregulated in a mutant losing BcJAR1, a gene encoding histone 3 lysine 4 (H3K4) demethylase that regulates fungal development and pathogenesis, in B. cinerea, implying that BcCyp2 functions under the control of BcJar1. Collectively, our findings provide new insights into cyclophilins mediating the pathogenesis of B. cinerea and potential targets for drug intervention for fungal diseases.
Assuntos
Botrytis/patogenicidade , Ciclofilinas/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Phaseolus/microbiologia , Doenças das Plantas/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Adaptação Fisiológica , Ciclofilinas/genética , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Folhas de Planta/microbiologia , VirulênciaRESUMO
Histone 3 Lysine 4 (H3K4) demethylation is ubiquitous in organisms, however the roles of H3K4 demethylase JARID1(Jar1)/KDM5 in fungal development and pathogenesis remain largely unexplored. Here, we demonstrate that Jar1/KDM5 in Botrytis cinerea, the grey mould fungus, plays a crucial role in these processes. The BcJAR1 gene was deleted and its roles in fungal development and pathogenesis were investigated using approaches including genetics, molecular/cell biology, pathogenicity and transcriptomic profiling. BcJar1 regulates H3K4me3 and both H3K4me2 and H3K4me3 methylation levels during vegetative and pathogenic development, respectively. Loss of BcJAR1 impairs conidiation, appressorium formation and stress adaptation; abolishes infection cushion (IC) formation and virulence, but promotes sclerotium production in the ΔBcjar1 mutants. BcJar1 controls reactive oxygen species (ROS) production and proper assembly of Sep4, a core septin protein and virulence determinant, to initiate infection structure (IFS) formation and host penetration. Exogenous cAMP partially restored the mutant appressorium, but not IC, formation. BcJar1 orchestrates global expression of genes for ROS production, stress response, carbohydrate transmembrane transport, secondary metabolites, etc., which may be required for conidiation, IFS formation, host penetration and virulence of the pathogen. Our work systematically elucidates BcJar1 functions and provides novel insights into Jar1/KDM5-mediated H3K4 demethylation in regulating fungal development and pathogenesis.
Assuntos
Botrytis/genética , Botrytis/patogenicidade , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adaptação Fisiológica , Botrytis/crescimento & desenvolvimento , Parede Celular/metabolismo , Sequência Conservada , AMP Cíclico/metabolismo , Desmetilação , Regulação para Baixo/genética , Ontologia Genética , Modelos Biológicos , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Oxirredução , Oxigênio/metabolismo , Esporos Fúngicos/metabolismo , Estresse Fisiológico , Virulência/genéticaRESUMO
The fruits of Melia toosendan Sieb. et Zucc. (Meliaceae) are a source of bioactive limonoids that can be used as effective pesticides. In this study, two novel limonoids, 6-acetylsendanal and 6-ketocinamodiol, were isolated together with fourteen known compounds, namely four protolimonoids, six trichilin-class limonoids, and four C-seco limonoids. The structures of the new compounds were determined by extensive spectroscopic analyses (HR-ESI-MS, UV, IR, 1D and 2D NMR). The bioassay results revealed that eleven of the extracted limonoids exhibited interesting antifeedant activities against the larvae of Pieris rapae with AFC50 values in the range of 0.11-1.79â mm. Particularly, mesendanin H, with an AFC50 value of 0.11â mm, exhibited a higher activity than the positive control toosendanin. Information on new bioactive limonoids may provide further insight into M. toosendan as a source of bioactive components.
Assuntos
Limoninas/química , Melia/química , Animais , Borboletas/efeitos dos fármacos , Borboletas/crescimento & desenvolvimento , Medicamentos de Ervas Chinesas/farmacologia , Frutas/química , Frutas/metabolismo , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Limoninas/isolamento & purificação , Limoninas/farmacologia , Espectroscopia de Ressonância Magnética , Melia/metabolismo , Conformação Molecular , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
Vagus nerve stimulation (VNS) has been increasingly studied in treating treatment-resistant depression (TRD), but the findings have been mixed. This updated meta-analysis was conducted to examine the efficacy and safety of adjunctive VNS for TRD. Controlled studies reporting on the efficacy and safety of adjunctive VNS for TRD were screened, identified and analyzed. Standardized mean difference (SMD), risk ratio (RR) and their 95% confidence intervals (CIs) were analyzed using RevMan version 5.3. Three controlled studies with a total of 1048 patients with TRD compared VNS (n = 622) with control (n = 426) groups. Only one study was rated as 'high quality' using the Jadad scale. Adjunctive VNS was significantly superior to the control group regarding study-defined response [SMD:1.96 (95%CI:1.60, 2.40), P < 0.00001, I2 = 0%]. Patient-reported voice alteration occurred more frequently with adjunctive VNS for patients with TRD. No significant group differences were found regarding discontinuation due to any reason [RR:0.50 (95%CI:0.12, 2.09), P = 0.34, I2 = 85%]. Adjunctive VNS appeared to be effective and relatively safe treatment for TRD. Further randomized controlled trials are needed to confirm the efficacy and safety of VNS for TRD.
Assuntos
Transtorno Depressivo Resistente a Tratamento/terapia , Avaliação de Resultados em Cuidados de Saúde , Estimulação do Nervo Vago , Humanos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Estimulação do Nervo Vago/efeitos adversos , Estimulação do Nervo Vago/estatística & dados numéricosRESUMO
The Love wave biosensor is considered to be one of the most promising probing methods in biomedical research and diagnosis, and has been applied to detect the mechano-biological behaviour of cells attached to the surface of the device. More efforts should be devoted to basic theoretical research and relevant device performance analysis that may contribute to the further developments of Love wave sensors. In this study, a 36º YX-LiTaO3-based Love wave sensor with a parylene-C wave guiding layer was adopted as a cell-based biosensor to monitor the adhesion process of tendon stem/progenitor cells (TSCs), a newly discovered cell type in tendons. A theoretical model is proposed to describe the Love wave propagation, in which the adherent cells are considered as a uniform viscoelastic layer. The effects of viscoelastic cell layer and wave guiding layer on the propagation velocity υ and propagation loss (PL) are investigated. The numerical results indicate that adherent cell layers of different storage or loss shear modulus in certain ranges can induce pronounced and characteristic variations in υ and PL, revealing the potential of Love wave sensors to provide useful quantitative measures on cellular mechanical properties. The sensor response to the adhesion of TSCs exhibits high consistency with experimental observations, which demonstrates the Love wave biosensor as a very promising sensor platform for investigating cellular activities under multiple physiological conditions.
Assuntos
Acústica , Técnicas Biossensoriais/métodos , Adesão Celular , Células-Tronco/citologia , Tendões/citologia , Elasticidade , ViscosidadeRESUMO
Aims: To investigate roles of miR-29a-DNMT1-SOCS1 axis in cervical cancer invasion and migration. Materials & methods: The methylation level of SOCS1 was determined by methylation specific PCR. The cell apoptosis, proliferation, migration and invasion were examined by Annexin-V/PI staining, MTT and colony formation assays, plus scratch and transwell assays respectively. The expressions of epithelial-mesenchymal transition and NF-κB related proteins were determined by western blotting. Results: MiR-29a was downregulated, accompanied with DNMT1 upregulation and SOCS1 downregulation in cervical cancer tissues. MiR-29a suppressed DNMT1, inhibited SOCS1 promoter methylation and upregulated its expression. Moreover, miR-29a promoted cell apoptosis, suppressed proliferation, inhibited migration and invasion via inactivation of NF-κB signaling pathway in cervical cancer cells. Conclusion: MiR-29a-DNMT1-SOCS1 axis plays an important role on invasion and metastasis in cervical cancer via NF-κB signaling pathway.