Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Am Chem Soc ; 146(7): 4433-4443, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329948

RESUMO

Potassium-sulfur (K-S) batteries are severely limited by the sluggish kinetics of the solid-phase conversion of K2S3/K2S2 to K2S, the rate-determining and performance-governing step, which urgently requires a cathode with facilitated sulfur accommodation and improved catalytic efficiency. To this end, we leverage the orbital-coupling approach and herein report a strong d-π coupling catalytic configuration of single-atom Co anchored between two alkynyls of graphdiyne (Co-GDY). The d-π orbital coupling of the Co-C4 moiety fully redistributes electrons two-dimensionally across the GDY, and as a result, drastically accelerates the solid-phase K2S3/K2S2 to K2S conversion and enhances the adsorption of sulfur species. Applied as the cathode, the S/Co-GDY delivered a record-high rate performance of 496.0 mAh g-1 at 5 A g-1 in K-S batteries. In situ and ex situ characterizations coupling density functional theory (DFT) calculations rationalize how the strong d-π orbital coupling of Co-C4 configuration promotes the reversible solid-state transformation kinetics of potassium polysulfide for high-performance K-S batteries.

2.
Environ Res ; 252(Pt 2): 118885, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614200

RESUMO

Photocatalysis was an attractive strategy that had potential to tackle the Microcystin-LR (MC-LR) contamination of aquatic ecosystems. Herein, magnetic photocatalyst Fe3O4/Bi2WO6/Reduced graphene oxide composites (Bi2WO6/Fe3O4/RGO) were employed to degrade MC-LR. The removal efficiency and kinetic constant of the optimized Bi2WO6/Fe3O4/RGO (Bi2WO6/Fe3O4-40%/RGO) was 1.8 and 2.3 times stronger than the pure Bi2WO6. The improved activity of Bi2WO6/Fe3O4-40%/RGO was corresponded to the expanded visible light adsorption ability and reduction of photogenerated carrier recombination efficiency through the integration of Bi2WO6 and Fe3O4-40%/RGO. The MC-LR removal efficiency exhibited a positive tendency to the initial density of algae cells, fulvic acid, and the concentration of MC-LR decreased. The existed anions (Cl-, CO3-2, NO3-, H2PO4-) reduced MC-LR removal efficiency of Bi2WO6/Fe3O4-40%/RGO. The Bi2WO6/Fe3O4-40%/RGO could degrade 79.3% of MC-LR at pH = 7 after 180 min reaction process. The trapping experiments and ESR tests confirmed that the h+, ∙OH, and ∙O2- played a significant role in MC-LR degradation. The LC-MS/MS result revealed the intermediates and possible degradation pathways.


Assuntos
Bismuto , Grafite , Luz , Toxinas Marinhas , Microcistinas , Microcistinas/química , Microcistinas/efeitos da radiação , Grafite/química , Bismuto/química , Poluentes Químicos da Água/química , Fotólise , Catálise
3.
Nano Lett ; 23(16): 7599-7606, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37531458

RESUMO

Zero-dimensional organic-inorganic metal halide hybrids provide ideal bulk-crystal platforms for exploring the pressure engineering of electron-phonon coupling (EPC) and self-trapped exciton (STE) emission at the molecular level. However, the low stiffness of inorganic clusters hinders the reversible tuning of these physical properties. Herein, we designed a Sb3+-doped metal halide with a high emission yield (89.4%) and high bulk modulus (35 GPa) that enables reversible and enhanced STE emission (20-fold) under pressure. The high lattice rigidity originates from the corner-shared cage-structured inorganic tetramers and ring-shaped organic ligands. Further, we reveal that the pressure-enhanced emission regime below 4.5 GPa is owing to the lattice hardening and preferably EPC strength reducing, while the pressure-insensitive emission regime within 4.5-8.5 GPa results from the enhanced intercluster Coulombic attraction force that resists intracluster compression. These results provide insights into the structure-property relation and molecular engineering of zero-dimensional metal halides toward wide-band and pressure-sensitive light sources.

4.
J Am Chem Soc ; 145(20): 11074-11084, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159564

RESUMO

Two-dimensional (2D) rare-earth oxyhalides (REOXs) with novel properties offer fascinating opportunities for fundamental research and applications. The preparation of 2D REOX nanoflakes and heterostructures is crucial for revealing their intrinsic properties and realizing high-performance devices. However, it is still a great challenge to fabricate 2D REOX using a general approach. Herein, we design a facile strategy to prepare 2D LnOCl (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy) nanoflakes using the molten salt method assisted by the substrate. A dual-driving mechanism was proposed in which the lateral growth could be guaranteed by the quasi-layered structure of LnOCl and the interaction between the nanoflakes and the substrate. Furthermore, this strategy has also been successfully applied for block-by-block epitaxial growth of diverse lateral heterostructures and superlattice. More significantly, the high performance of MoS2 field-effect transistors with LaOCl nanoflake as the gate dielectric was demonstrated, exhibiting competitive device characteristics of high on/off ratios up to 107 and low subthreshold swings down to 77.1 mV dec-1. This work offers a deep understanding of the growth of 2D REOX and heterostructures, shedding new light on the potential applications in future electronic devices.

5.
Small ; 16(39): e2002718, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32830405

RESUMO

The intrinsic properties of carbon-based material and the voltage window of electrolyte are the two key barriers to restrict the energy density of carbon-based supercapacitors (SCs). Herein, a cucurbit[6]uril-derived nitrogen-doped hierarchical porous carbon (CBCx) with unique pore structure characteristics is synthesized and successfully applied to construct SCs based on different electrolyte systems. Owing to narrow pore size distribution (0.5-4 nm), colossal ion-accessible pore volume, prominent supermesopore volume, and reasonable heteroatom configuration, the CBCx-based SCs demonstrate excellent electrochemical performances with high operating voltages in two distinct systems. The optimal SCs can output a maximum energy/power density of 18 Wh kg-1 (11.1 Wh L-1 )/20 kW kg-1 (12.3 kW L-1 ) with an operating voltage of 1.2 V in potassium hydroxide aqueous electrolyte, as well as an ultralong cycle life of up to 50 000 cycles (0.046% decay per 100 cycles). Furthermore, the optimal SCs deliver an exceptionally high energy/power density of 95 Wh kg-1 (58.4 Wh L-1 )/70 kW kg-1 (43 kW L-1 ) with an ultrahigh operating voltage of 3.5 V in 1-ethyl-3-methylimidazolium tetrafluoroborate electrolyte. This work opens up a new application field for cucurbit[6]uril and provides an alternative avenue for optimizing the performances of carbon-based materials for SCs.

6.
Adv Mater ; 36(9): e2307006, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37924225

RESUMO

The ferroptosis pathway is recognized as an essential strategy for tumor treatment. However, killing tumor cells in deep tumor regions with ferroptosis agents is still challenging because of distinct size requirements for intratumoral accumulation and deep tumor penetration. Herein, intelligent nanocapsules with size-switchable capability that responds to acid/hyperthermia stimulation to achieve deep tumor ferroptosis are developed. These nanocapsules are constructed using poly(lactic-co-glycolic) acid and Pluronic F127 as carrier materials, with Au-Fe2 C Janus nanoparticles serving as photothermal and ferroptosis agents, and sorafenib (SRF) as the ferroptosis enhancer. The PFP@Au-Fe2 C-SRF nanocapsules, designed with an appropriate size, exhibit superior intratumoral accumulation compared to free Au-Fe2 C nanoparticles, as evidenced by photoacoustic and magnetic resonance imaging. These nanocapsules can degrade within the acidic tumor microenvironment when subjected to laser irradiation, releasing free Au-Fe2 C nanoparticles. This enables them to penetrate deep into tumor regions and disrupt intracellular redox balance. Under the guidance of imaging, these PFP@Au-Fe2 C-SRF nanocapsules effectively inhibit tumor growth when exposed to laser irradiation, capitalizing on the synergistic photothermal and ferroptosis effects. This study presents an intelligent formulation based on iron carbide for achieving deep tumor ferroptosis through size-switchable cascade delivery, thereby advancing the comprehension of ferroptosis in the context of tumor theranostics.


Assuntos
Compostos Inorgânicos de Carbono , Ferroptose , Hipertermia Induzida , Compostos de Ferro , Nanocápsulas , Nanopartículas , Neoplasias , Humanos , Linhagem Celular Tumoral , Neoplasias/terapia , Sorafenibe , Hipertermia/terapia , Hipertermia Induzida/métodos , Microambiente Tumoral
7.
ACS Nano ; 18(18): 11941-11954, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38652811

RESUMO

Closed pores play a crucial role in improving the low-voltage (<0.1 V) plateau capacity of hard carbon anodes for sodium-ion batteries (SIBs). However, the lack of simple and effective closed-pore construction strategies, as well as the unclear closed-pore formation mechanism, has severely hindered the development of high plateau capacity hard carbon anodes. Herein, we present an effective closed-pore construction strategy by one-step pyrolysis of zinc gluconate (ZG) and elucidate the corresponding mechanism of closed-pore formation. The closed-pore formation mechanism during the pyrolysis of ZG mainly involves (i) the precipitation of ZnO nanoparticles and the ZnO etching on carbon under 1100 °C to generate open pores of 0.45-4 nm and (ii) the development of graphitic domains and the shrinkage of the partial open pores at 1100-1500 °C to convert the open pores to closed pores. Benefiting from the considerable closed-pore content and suitable microstructure, the optimized hard carbon achieves an ultrahigh reversible specific capacity of 481.5 mA h g-1 and an extraordinary plateau capacity of 389 mA h g-1 for use as the anode of SIBs. Additionally, some in situ and ex situ characterizations demonstrate that the high-voltage slope capacity and the low-voltage plateau capacity stem from the adsorption of Na+ at the defect sites and Na-cluster formation in closed pores, respectively.

8.
Chemosphere ; 321: 138105, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36764614

RESUMO

Developing heterostructure photocatalysts for removing Microcystin-LR (MC-LR) under visible light was of positive significance to control the risk of Microcystins and ensure the safety of water quality. Herein, the Bi2WO6/Reduced graphene oxide (RGO) nanocomposites were prepared via a simple one-spot hydrothermal method for the first time to degrade MC-LR. The optimized Bi2WO6/RGO (Bi2WO6/RGO3%) achieved a removal efficiency of 82.3% toward MC-LR, with 1.9-fold higher efficiencies than Bi2WO6, and it showed superior reusability and high stability after 5 cycles. The degradation efficiency of MC-LR demonstrated a negative trend with the initial concentration of MC-LR, fulvic acid, and initial algal density increased, while MC-LR removal rate for the presence of anions was in the order of Cl- > CO3-2 > NO3- > H2PO4-. The degradation efficiency of MC-LR could reach up to 82.3% within 180 min in the neutral condition. The active species detection experiments and EPR measurements demonstrated that the holes (h+), hydroxide radicals (∙OH), and superoxide radicals (∙O2-) participated in the degradation of MC-LR. The DFT calculations showed that 0.56 of electron transferred from Bi2WO6 to RGO, indicating RGO introduction could prevent the recombination of photoelectrons and holes and was beneficial for MC-LR degradation. Finally, the possible intermediate products and degradation pathways were also proposed by the LC-MS/MS analysis.


Assuntos
Microcistinas , Espectrometria de Massas em Tandem , Microcistinas/química , Teoria da Densidade Funcional , Cromatografia Líquida , Luz
9.
Sci Bull (Beijing) ; 68(22): 2750-2759, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37770327

RESUMO

Rechargeable zinc (Zn) metal batteries (RZMBs) are demonstrated as sustainable and low-cost alternative in the energy storage industry of the future. However, the elusive Zn deposition behavior and water-originated parasitic reactions bring significant challenges to the fabrication and commercialization of Zn anodes, especially under high plating/stripping capacity. In this work, the ferromagnetic interface in conjunction with the magnetic field (MF) to effectively address these fabrication hurdles is proposed. The introduction of ferromagnetic layer with high chemical durability not only maintains the long-term regulating deposition steadily by magnetic field, but also plays a significant role in preventing side reactions, hence reducing gas production. These merits allow Zn-anode to achieve over 350 h steady Zn-deposition with a depth of discharge (DODZn) up to 82% and translates well to ZnFe-MF||V2O5 full cells, supporting stable cycling at high mass loading of 13.1 mg/cm2, which makes RZMBs configurations promising for commercial applications.

10.
ACS Nano ; 16(12): 21443-21451, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36484831

RESUMO

The sulfur doping strategy has been attracting extensive interest in potassium-ion battery carbon anodes for the dual potential of improving the capacity and kinetics of carbon anodes. Understanding the doping and potassium storage mechanism of sulfur is crucial to guide the structural design and optimization of high-performance sulfur-doped carbon anodes. Herein, presenting a laboratory-synthesized sulfur-doped hard carbon (SHC) with a sulfur content of 6.4 at. % as an example, we clarify the sulfur doping mechanism and reveal the role of sulfur in potassium storage. The high sulfur content of SHC stems from the selective substitution of sulfur for carbon and the residual trace of sulfur molecular fragments after sulfurization. As a result, thanks to the multifaceted roles of doped sulfur in potassium storage, about twice as much capacity, rate capability, and cycling stability is achieved for SHC against S-free hard carbon at the same test conditions. Furthermore, potassium-ion hybrid capacitors assembled based on an SHC anode demonstrate high energy/power density (139 Wh kg-1/7.3 kW kg-1), along with an extraordinary cycling stability.

11.
J Colloid Interface Sci ; 620: 284-292, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35429707

RESUMO

Sodium alginate (SA) is an environment-friendly and low-cost polysaccharide carbohydrate extracted from seaweed. As a carbon precursor, sodium alginate has the advantages of clear molecular structure, small molecular weight, and easy controls of the structure and composition of the product, but there have been few studies for the mechanism for SA carbonization. In this work, the carbon skeleton cross-linking mode, heteroatom doping and defect generation mechanism in the process of SA pyrolysis are clarified. Subsequently, based on the understanding of the carbonization mechanism of SA-derived carbon, we have prepared a stable SA-derived interconnected porous carbon by self-template method. The materials prepared by this method possess high oxygen content (17.6 at%) and high specific surface area (384.4 m2 g-1). Zn-ion hybrid capacitors (ZICs) device assembled with SA-derived porous carbon performs superior energy densities (based on cathode mass) of 78.35 and 35.56 Wh kg-1 at the power densities of 160 and 5120 W kg-1, respectively. This work deeply explained the carbonization mechanism of sodium alginate and evaluated the application prospects of SA-based carbon in ZICs comprehensively.


Assuntos
Alginatos , Carbono , Carbono/química , Eletrodos , Íons , Porosidade
12.
J Colloid Interface Sci ; 620: 24-34, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35405563

RESUMO

Heteroatom-rich carbon materials deliver superior potassium storage capacity owing to the abundant active sites, but their stability and conductivity are damaged because of the numerous defects and distortion of π-conjugated system. In this work, we amended the adverse influences of heteroatoms on carbon materials through the B, N stabilization effect. Due to an amending effect of B atoms on the N-doped carbon matrix, the integrity of the carbon skeleton and stability of the system are significantly enhanced, and the undesirable defects are transformed into favorable active sites, resulting in the simultaneous improvement of K+ storage capacity, rate performance and cyclic stability. The stabilized materials have a highly reversible carbon structure and fast K+ transfer kinetics, leading to high reversible capacity (300 mA h g-1 at 0.1 A g-1), good rate performance (107.2 mA h g-1 at 10 A g-1) and superior cyclic stability (75.3 % capacity retention from cycle 11 to 2000 at 1 A g-1). Consequently, the constructed devices perform excellent energy densities of 158.8 and 40.7 Wh kg-1 under power densities of 100 and 11250 W kg-1, respectively. This work proposes an effective strategy for significantly improving heteroatom-rich carbon materials, which broadens its application fields in high-performance potassium ion storage.


Assuntos
Carbono , Potássio , Condutividade Elétrica , Íons , Microesferas , Potássio/química
13.
J Colloid Interface Sci ; 628(Pt A): 975-983, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35964444

RESUMO

S doping is an effective strategy to improve the potassium-ion storage performance of carbon-based materials. However, due to the large atomic radius of S and poor thermal stability, it is challenging to synthesize carbon materials with high sulfur content by solid-phase transformation. In this work, we designed a multi-cavity structure that can confine the molten S during heat treatment and make it fully react, then achieving high S doping (7.6 at. %). As we known, S doping can also effectively increase the active sites of carbon materials to obtain higher capacity. In addition, through different ex/in-situ characterizations and DFT calculations, we confirmed that the S atoms can effectively expand the interlayer spacing of carbon, which facilitates the intercalation/deintercalation reaction of K+, thereby significantly improving the rate performance. Therefore, benefiting from the effect of S-doping, the sample exhibits high reversible specific capacity (401.0 mAh g-1 at 0.1 A/g) and rate performance (167.2 mAh g-1 at 5 A/g). The as-assembled K+ hybrid capacitor delivers both high energy density and power density (138.5 W h kg-1 and 7692.5 W kg-1, respectively). This work provides a new approach to design S content carbon-based materials for high performance K+ storage.

14.
ACS Appl Mater Interfaces ; 13(10): 12006-12015, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33657794

RESUMO

Transition-metal selenides (TMSe) incorporate reversible multielectron Faradaic reactions that can deliver high specific capacitance. Unfortunately, they usually exhibit actual capacitance lower than their theoretical value and suffer from sluggish kinetics, which do not satisfy the demands of hybrid supercapacitors (HSCs), due to poor electron-transmission capability and inferior ion-transport rate. Herein, a kind of hollow biphase and bimetal cobalt nickel perselenide composed of metastable marcasite-type CoSe2 (m-CoSe2) and stable pyrite-type NiCoSe4 (p-NiCoSe4) is synthesized with metal glycerol alkoxide as precursors by regulating the Ni/Co ratios. This unique hollow biphase structure and bimetallic synergistic effect serves to boost electron-transmission capability and accelerate the ion/electron transfer rate, delivering an excellent specific capacitance of 1008 F g-1 at 0.5 A g-1 and a high discharge rate capability of 859 F g-1 at 20 A g-1. The capacitance remains around 80% of the initial capacitance after 5000 cycles. Consequently, a HSC based on the cobalt nickel perselenide cathode and a hierarchical porous carbon anode reveals a maximum energy density of 34.8 W h kg-1 and a maximum power density of 7272 W kg-1. This polymorphic bimetallic phase engineering provides an advanced and effective guidance for TMSe with high electrochemical properties.

15.
ACS Appl Mater Interfaces ; 13(42): 49942-49951, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34643371

RESUMO

Sulfur doping is a promising path to ameliorate the kinetics of carbon-based anodes. However, the similar electronegativity of sulfur and carbon and the poor thermal stability of sulfur severely restrict the development of high-sulfur-content carbon-based anodes. In this work, ultra-high sulfur-doped hierarchical porous hollow carbon spheres (SHCS) with a sulfur content of 6.8 at % are synthesized via a direct high-temperature sulfur-doping strategy. An SHCS has sulfur bonded to the carbon framework including C-S-C and C-SOx-C, which enlarges its interlayer distance (0.411 nm). In the K half-cell, benefiting from the considerable content and the reasonable architecture of sulfur, the SHCS exhibits significantly improved reversible specific capacity, initial Coulombic efficiency, and cyclability than hierarchical porous hollow carbon spheres without sulfur. Remarkably, the potassium ion hybrid capacitor device fabricated with the SHCS anode achieves excellent energy/power density (135.6 W h kg-1/17.7 kW kg-1) and unprecedented durability over 26,000 cycles at 2 A g-1. This research provides a superior strategy to design high-sulfur-content carbon-based anodes with excellent potassium storage performance.

16.
Adv Sci (Weinh) ; 7(20): 2001681, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33101869

RESUMO

Potassium-ion hybrid capacitors (PIHCs) have attracted tremendous attention because their energy density is comparable to that of lithium-ion batteries, whose power density and cyclability are similar to those of supercapacitors. Herein, a pomegranate-like graphene-confined cucurbit[6]uril-derived nitrogen-doped carbon (CBC@G) with ultra-high nitrogen-doping level (15.5 at%) and unique supermesopore-macropores interconnected graphene network is synthesized. The carbonization mechanism of cucurbit[6]uril is verified by an in situ TG-IR technology. In a K half-cell configuration, CBC@G anode demonstrates a superior reversible capacity (349.1 mA h g-1 at 0.1 C) as well as outstanding rate capability and cyclability. Moreover, systematic in situ/ex situ characterizations, and theory calculations are carried out to reveal the origin of the superior electrochemical performances of CBC@G. Consequently, PIHCs constructed with CBC@G anode and KOH-activated cucurbit[6]uril-derived nitrogen-doped carbon cathode demonstrate ultra-high energy/power density (172 Wh kg-1/22 kW kg-1) and extraordinary cyclability (81.5% capacity retention for 5000 cycles at 5 A g-1). This work opens up a new application field for cucurbit[6]uril and provides an alternative avenue for the exploitation of high-performance PIHCs.

17.
RSC Adv ; 9(18): 10237-10244, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35520903

RESUMO

Ion substitution and micromorphology control are two efficient strategies to ameliorate the electrochemical performance of supercapacitors electrode materials. Here, Al3+ doped α-Ni(OH)2 with peony-like morphology and porous structure has been successfully synthesized through a facile one-pot hydrothermal process. The Al3+ doped α-Ni(OH)2 electrode shows an ultrahigh specific capacitance of 1750 F g-1 at 1 A g-1, and an outstanding electrochemical stability of 72% after running 2000 cycles. In addition, the Al3+ doped α-Ni(OH)2 electrode demonstrates an excellent rate capability (92% retention at 10 A g-1). Furthermore, by using this unique Al3+ doped α-Ni(OH)2 as the positive electrode and a hierarchical porous carbon (HPC) as the negative electrode, the assembled asymmetric supercapacitor can demonstrate a high energy/power density (49.6 W h kg-1 and 14 kW kg-1). This work proves that synthesizing an Al3+ doped structure is an effective means to improve the electrochemical properties of α-Ni(OH)2. This scheme could be extended to other transition metal hydroxides to enhance their electrochemical performance.

18.
ACS Appl Mater Interfaces ; 10(51): 44483-44493, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30511827

RESUMO

It is a highly expected avenue to construct dual-carbon sodium-ion hybrid capacitors (SIHCs) using hierarchical porous carbon with interconnected pores, high accessible surface area, and disordered carbon frameworks for ameliorating the sluggish kinetics of SIHCs. In this work, a novel dual-carbon SIHCs system with homologous enhanced kinetics hierarchical porous hollow carbon spheres (HPCS) and hierarchical porous hollow carbon bowls (HPCB) as the anode and cathode is constructed for the first time. In a Na half-cell configuration, the HPCS anode synthesized through a facile one-pot in-situ template route demonstrates a superior reversible capacity as well as outstanding rate capability and cycleability, and the HPCB cathode fabricated by chemical activation of HPCS exhibits excellent capacitive behaviors. Thanks to superior properties and structures of the anode and cathode, the constructed novel dual-carbon SIHCs present an exceptionally high energy/power density (128.5 Wh kg-1 and 11.9 kW kg-1), along with a long cycling lifespan with retained morphology. This study on the kinetics of enhanced dual-carbon SIHCs opens a new avenue for optimizing the microstructure of hierarchical porous carbon and constructing new type of high-performance SIHCs systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA