Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Med ; 28(1): 130, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335331

RESUMO

Obesity is one of the major public health problems threatening the world, as well as a potential risk factor for chronic metabolic diseases. There is growing evidence that iron metabolism is altered in obese people, however, the highly refined regulation of iron metabolism in obesity and obesity-related complications is still being investigated. Iron accumulation can affect the body's sensitivity to insulin, Type 2 diabetes, liver disease and cardiovascular disease. This review summarized the changes and potential mechanisms of iron metabolism in several chronic diseases related to obesity, providing new clues for future research.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatias , Humanos , Obesidade , Doença Crônica , Hepatopatias/metabolismo , Ferro/metabolismo
2.
Macromol Rapid Commun ; 38(20)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28837743

RESUMO

Oxidation-responsive aliphatic polycarbonates represent a promising branch of functional biodegradable polymers. This paper reports the synthesis and ring-opening polymerization (ROP) of an eight-membered cyclic carbonate possessing phenylboronic pinacol ester (C3) and the H2 O2 -triggered degradation of its polymer (PC3). C3 is prepared from the inexpensive and readily available diethanolamine with a moderate yield and undergoes the well-controlled anionic ROP with a living character under catalysis of 1,8-diazabicyclo[5.4.0]undec-7-ene. It can also be copolymerized with l-lactide, trimethylene carbonate, and 5-ter-butyloxycarbonylamino trimethylene carbonate, affording the copolymers with a varied distribution of the repeating units. To clearly demonstrate the oxidative degradation mechanism of PC3, this paper first investigates the H2 O2 -induced decomposition of small-molecule model compounds by proton nuclear magnetic resonance (1 H NMR). It is found that the adduct products formed by the in-situ-generated secondary amines and p-quinone methide (QM) are thermodynamically unstable and can decompose slowly back to QM and the amines. On this basis, this paper further studies the H2 O2 -accelerated degradation of PC3 nanoparticles that are prepared by the o/w emulsion method. A sequential process of oxidation of the phenylboronic ester, 1,6-elimination of the in-situ-generated phenol, releasing CO2 and intramolecular cyclization or isomerization is proposed as the degradation mechanism of PC3.


Assuntos
Carbonatos/química , Cimento de Policarboxilato/química , Aminas/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Carbonatos/síntese química , Catálise , Ciclização , Peróxido de Hidrogênio/química , Indolquinonas/química , Nitrogênio/química , Oxirredução , Polimerização , Espectroscopia de Prótons por Ressonância Magnética
3.
Macromol Rapid Commun ; 36(22): 2012-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26297612

RESUMO

Polymer-drug conjugates have attracted great interest as one category of various promising nanomedicines due to the advantages of high drug-loading capacity, negligible burst release, and improved pharmacokinetics as compared with the small molecular weight drugs or the polymeric delivery systems with physically encapsulated drugs. Herein, a new type of oxidation-responsive polymer-drug conjugates composed of a poly(ethylene glycol) (PEG) block and a hydrophobic polyacrylate block to which Naproxen is attached through a phenylboronic ester linker is reported. The amphiphilic block copolymers are synthesized through the reversible addition-fragmentation chain transfer polymerization of the Naproxen-containing acrylic monomer using a PEG chain transfer agent. In neutral aqueous buffer, the conjugates formed nanoparticles with diameters of ≈150-300 nm depending on the length of the hydrophobic segment. The dynamic covalent bond of the phenylboronic ester is stabilized due to the hydrophobic microenvironment inside the nanoparticles. Upon exposure to H2 O2 , the phenylboronic ester is oxidized rapidly into the phenol derivative which underwent a 1,6-elimination reaction, releasing the intact Naproxen. The rate of drug release is influenced by the concentration of H2 O2 and the hydrophobic block length. This type of oxidation-responsive polymer-drug conjugate is feasible for other drugs containing hydroxyl group or amino group.


Assuntos
Resinas Acrílicas/química , Ácidos Borônicos/química , Portadores de Fármacos/química , Nanopartículas/química , Naproxeno/química , Polietilenoglicóis/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Ésteres , Peróxido de Hidrogênio/química , Interações Hidrofóbicas e Hidrofílicas , Cinética , Micelas , Nanomedicina/métodos , Nanopartículas/ultraestrutura , Oxirredução , Tamanho da Partícula , Polimerização
4.
Front Nutr ; 10: 1225946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37899839

RESUMO

The prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD) is on the rise globally. It is currently one of the most prevalent liver diseases and one of the world's important public health problems. At present, there is no consensus on a pharmacological treatment for MAFLD. By contrast, lifestyle interventions based on exercise and a balanced diet are considered to be the cornerstone of MAFLD management. Mediterranean diet (MD) have a large content of polyphenols, polyunsaturated fatty acids, oleic acid, carotenoids and fiber, which carry out antioxidant, anti-inflammatory and antibacterial benefits. It has been considered to reduce the incidence rate of cardiovascular disease and type 2 diabetes. The purpose of this narrative review is therefore to summarize and analyze the evidence for the effect of MD on metabolic outcomes in MAFLD patients.

5.
ACS Macro Lett ; 4(11): 1220-1224, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35614840

RESUMO

We report a new type of oxidation-promoted fast-degradable aliphatic poly(carbonate)s (PCs) prepared by the ring-opening polymerization (ROP) of a six-membered cyclic carbonate containing a phenylboronic pinacol ester. The ROP of this monomer catalyzed by 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) proceeded rapidly at ambient temperature with a good control over molecular weight and polydispersity at high monomer conversion. The H2O2-induced decomposition of this cyclic monomer and its noncyclic carbonate analogue was first studied by 1H NMR in order to clearly demonstrate the degradation mechanism of the PCs. The results of 1H NMR, GPC, and Nile Red fluorescence measurements revealed that the PC nanoparticles formulated by the o/w emulsion method were stable in neutral buffer, but upon triggering with H2O2, they underwent rapid surface degradation via the consecutive processes of oxidation, 1,6-elimination, release of CO2, and intramolecular cyclization. The degradation rates of the nanoparticles were dependent on the concentration of H2O2, and the nanoparticles were even sensitive to 0.5 mM of H2O2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA