Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 160(19)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38757618

RESUMO

Surface tension and interfacial tension are crucial to the study of nanomaterials. Herein, we report a solubility method using magnesium oxide nanoparticles of different radii (1.8-105.0 nm, MgO NPs) dissolved in pure water as a targeted model; the surface tension and interfacial tension (and their temperature coefficients) were determined by measuring electrical conductivity and combined with the principle of the electrochemical equilibrium method, and the problem of particle size dependence is discussed. Encouragingly, this method can also be used to determine the ionic (atomic or molecular) radius and Tolman length of nanomaterials. This research results disclose that surface/interfacial tension and their temperature coefficients have a significant relationship with particle size. Surface/interfacial tension decreases rapidly with a radius <10 nm (while the temperature coefficients are opposite), while for a radius >10 nm, the effect is minimal. Especially, it is proven that the value of Tolman length is positive, the effect of particle size on Tolman length is consistent with the surface/interfacial tension, and the Tolman length of the bulk does not change much in the temperature range. This work initiates a new era for reliable determination of surface/interfacial tension, their temperature coefficients, ionic radius, and Tolman length of nanomaterials and provides an important theoretical basis for the development and application of various nanomaterials.

2.
Chemosphere ; 350: 141143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38195015

RESUMO

Hybrid organic framework materials are a class of hierarchical porous crystalline materials that have emerged in recent years, composed of three types of porous crystal materials, namely metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and hydrogen-bonded organic frameworks (HOFs). The combination of various organic framework properties in hybrid organic frameworks generates synergistic effects, which has attracted widespread attention from researchers. The synthesis methods of hybrid organic frameworks are also an intriguing topic, enabling the formation of core-shell heterostructures through epitaxial growth, template conversion, medium growth, or direct combination. These hybrid organic framework materials have demonstrated remarkable performance in the application of photocatalytic wastewater purification and have developed various forms of applications. This article reviews the preparation principles and methods of various hybrid organic frameworks and provides a detailed overview of the research progress of photocatalytic water purification hybrid organic frameworks. Finally, the challenges and development prospects of hybrid organic framework synthesis and their application in water purification are briefly discussed.


Assuntos
Estruturas Metalorgânicas , Purificação da Água , Hidrogênio , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA