Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 17(6): 4029-33, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25583685

RESUMO

Molecular ferroelectric thin films are highly desirable for their easy and environmentally friendly processing, light weight, and mechanical flexibility. A thin film of diisopropylammonium perchlorate (DIPAP) processed by a spin-coating method shows a good roughness and textured structure with (101) orientation in the ferroelectric phase with a space group of P1. Simultaneously, the thin film shows ferroelectricity and ferroelectric relaxivity above room temperature, which is completely different from crystals. These properties make DIPAP a candidate in sensing, data storage, electro-optics, and molecular/flexible electronics.

2.
Materials (Basel) ; 17(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38591616

RESUMO

Nowadays, high-pressure hydrogen storage is the most commercially used technology owing to its high hydrogen purity, rapid charging/discharging of hydrogen, and low-cost manufacturing. Despite numerous reviews on hydrogen storage technologies, there is a relative scarcity of comprehensive examinations specifically focused on high-pressure gaseous hydrogen storage and its associated materials. This article systematically presents the manufacturing processes and materials used for a variety of high-pressure hydrogen storage containers, including metal cylinders, carbon fiber composite cylinders, and emerging glass material-based hydrogen storage containers. Furthermore, it introduces the relevant principles and theoretical studies, showcasing their advantages and disadvantages compared to conventional high-pressure hydrogen storage containers. Finally, this article provides an outlook on the future development of high-pressure hydrogen storage containers.

3.
Sci Rep ; 5: 9093, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25766744

RESUMO

The clear understanding of exchange interactions between magnetic ions in substituted BiFeO3 is the prerequisite for the comprehensive studies on magnetic properties. BiFe0.5Mn0.5O3 films and BiFeO3/BiMnO3 superlattices have been fabricated by pulsed laser deposition on (001) SrTiO3 substrates. Using piezoresponse force microscopy (PFM), the ferroelectricity at room temperature has been inferred from the observation of PFM hysteresis loops and electrical writing of ferroelectric domains for both samples. Spin glass behavior has been observed in both samples by temperature dependent magnetization curves and decay of thermo-remnant magnetization with time. The magnetic ordering has been studied by X-ray magnetic circular dichroism measurements, and Fe-O-Mn interaction has been confirmed to be antiferromagnetic (AF). The observed spin glass in BiFe0.5Mn0.5O3 films has been attributed to cluster spin glass due to Mn-rich ferromagnetic (FM) clusters in AF matrix, while spin glass in BiFeO3/BiMnO3 superlattices is due to competition between AF Fe-O-Fe, AF Fe-O-Mn and FM Mn-O-Mn interactions in the well ordered square lattice with two Fe ions in BiFeO3 layer and two Mn ions in BiMnO3 layer at interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA