Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 16(2): e1905075, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31814261

RESUMO

Transition-metal phosphides have flourished as promising candidates for oxygen evolution reaction (OER) electrocatalysts. Herein, it is demonstrated that the electrocatalytic OER performance of CoP can be greatly improved by constructing a hybrid CoP/TiOx heterostructure. The CoP/TiOx heterostructure is fabricated using metal-organic framework nanocrystals as templates, which leads to unique hollow structures and uniformly distributed CoP nanoparticles on TiOx . The strong interactions between CoP and TiOx in the CoP/TiOx heterostructure and the conductive nature of TiOx with Ti3+ sites endow the CoP-TiOx hybrid material with high OER activity comparable to the state-of-the-art IrO2 or RuO2 OER electrocatalysts. In combination with theoretical calculations, this work reveals that the formation of CoP/TiOx heterostructure can generate a pathway for facile electron transport and optimize the water adsorption energy, thus promoting the OER electrocatalysis.

2.
Nano Lett ; 19(3): 2037-2043, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30803236

RESUMO

While Li-ion battery cathode-electrolyte interfaces (CEIs) have been extensively investigated in recent decades, accurately identifying the chemical nature and tracking the dynamics of the CEIs during electrochemical cycling still remain a grand challenge. Here we report our findings in the investigation into the dynamic evolution of the interface between a LiNi0.33Co0.33Mn0.33O2 (LNMC) cathode and an ethylene carbonate/dimethyl carbonate (EC/DMC)-based electrolyte using surface-enhanced Raman spectroscopy (SERS) performed on a model cell under typical battery operating conditions. In particular, the strong SERS activity provided by a monolayer of Au nanocubes deposited on a model LNMC electrode (additive-free) enables quasi-quantitative assessment of the CEI evolution during cycling, proving information vital to revealing the dynamics of the species adsorbed on the LNMC surface as a function of cell potential. Furthermore, our theoretical calculation, which is based on the interaction between a model interface-bound molecule and a model LNMC surface, agrees with our experimental observation. The carefully designed operando SERS platform has demonstrated high sensitivity, good surface specificity, and excellent compatibility with extensive electrochemical measurements; it is also applicable to fundamental studies of dynamic interfaces in other electrochemical energy storage and conversion systems.

3.
Opt Lett ; 44(8): 1908-1911, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30985772

RESUMO

All-inorganic perovskite CsPbBr3 thin films have been prepared on Si (100) substrate by a pulsed-laser deposition (PLD) technique, and the morphology, structure, absorbance, and photoluminescence properties of CsPbBr3 thin films are investigated. A photodetector based on CsPbBr3/n-Si heterojunction has been fabricated, and the performances of the device are characterized. The heterojunction photodetector exhibits diode-like rectifying behavior, and the photocurrent-to-dark-current ratio and peak responsivity of the heterojunction are approximately 168.5 and 0.6 A/W (-5 V, 520 nm), respectively. Furthermore, the CsPbBr3/n-Si heterojunction photodetector exhibits fast response and recovery times. With good optoelectronic properties, CsPbBr3 thin films prepared by PLD should be widely applicable to high-performance photodetectors and other optoelectronic devices.

4.
Angew Chem Int Ed Engl ; 58(7): 1975-1979, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30520258

RESUMO

Large carbon networks featuring hierarchical pores and atomically dispersed metal sites (ADMSs) are ideal materials for energy storage and conversion due to the spatially continuous conductive networks and highly active ADMSs. However, it is a challenge to synthesize such ADMS-decorated carbon networks. Here, an innovative fusion-foaming methodology is presented in which energetic metal-organic framework (EMOF) nanoparticles are puffed up to submillimeter-scaled ADMS-decorated carbon networks via a one-step pyrolysis. Their extraordinary catalytic performance towards oxygen reduction reaction verifies the practicability of this synthetic approach. Moreover, this approach can be readily applicable to a wide range of unexplored EMOFs, expanding scopes for future materials design.

5.
Small ; 14(23): e1800285, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29718590

RESUMO

Currently, metal-organic frameworks (MOFs) are intensively studied as active materials for electrochemical energy storage applications due to their tunable structure and exceptional porosities. Among them, water stable pillared MOFs with dual ligands have been reported to exhibit high supercapacitor (SC) performance. Herein, the "One-for-All" strategy is applied to synthesize both positive and negative electrodes of a hybrid SC (HSC) from a single pillared MOF. Specifically, Ni-DMOF-TM ([Ni(TMBDC)(DABCO)0.5 ], TMBDC: 2,3,5,6-tetramethyl-1,4-benzenedicarboxylic acid, DABCO: 1,4-diazabicyclo[2.2.2]-octane) nanorods are directly grown on carbon fiber paper (CFP) (denoted as CFP@TM-nanorods) with the help of triethylamine and function as the positive electrode of HSC under alkaline electrolyte. Meanwhile, calcinated N-doped hierarchical porous carbon nanorods (CFP@TM-NPCs) are produced and utilized as the negative counter-electrode from a one-step heat treatment of CFP@TM-nanorods. After assembling these two electrodes together to make a hybrid device, the TM-nanorods//TM-NPCs exhibit a wide voltage window of 1.5 V with a high sloping discharge plateau between 1-1.2 V, indicating its great potential for practical applications. This as-described "One-for-All" strategy is widely applicable and highly reproducible in producing MOF-based electrode materials for HSC applications, which shortens the gap between experimental synthesis and practical application of MOFs in fast energy storage.

6.
Nano Lett ; 17(5): 2788-2795, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394621

RESUMO

Metal oxides and carbon-based materials are the most promising electrode materials for a wide range of low-cost and highly efficient energy storage and conversion devices. Creating unique nanostructures of metal oxides and carbon materials is imperative to the development of a new generation of electrodes with high energy and power density. Here we report our findings in the development of a novel graphene aerogel assisted method for preparation of metal oxide nanoparticles (NPs) derived from bulk MOFs (Co-based MOF, Co(mIM)2 (mIM = 2-methylimidazole). The presence of cobalt oxide (CoOx) hollow NPs with a uniform size of 35 nm monodispersed in N-doped graphene aerogels (NG-A) was confirmed by microscopic analyses. The evolved structure (denoted as CoOx/NG-A) served as a robust Pt-free electrocatalyst with excellent activity for the oxygen reduction reaction (ORR) in an alkaline electrolyte solution. In addition, when Co was removed, the resulting nitrogen-rich porous carbon-graphene composite electrode (denoted as C/NG-A) displayed exceptional capacitance and rate capability in a supercapacitor. Further, this method is readily applicable to creation of functional metal oxide hollow nanoparticles on the surface of other carbon materials such as graphene and carbon nanotubes, providing a good opportunity to tune their physical or chemical activities.

7.
Angew Chem Int Ed Engl ; 57(31): 9604-9633, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29460497

RESUMO

Metal sites play an essential role in both electrocatalytic and photocatalytic energy conversion. The highly ordered arrangements of the organic linkers and metal nodes as well as the well-defined pore structures of metal-organic frameworks (MOFs) make them ideal substrates to support atomically dispersed metal sites (ADMSs) located in their metal nodes, linkers, and pores. Porous carbon materials doped with ADMSs can be derived from these ADMS-incorporating MOF precursors through controlled treatments. These ADMSs incorporated in pristine MOFs and MOF-derived carbon materials possess unique advantages over molecular or bulk metal-based catalysts and bridge the gap between homogeneous and heterogeneous catalysts for energy-conversion applications. This Review presents recent progress in the design and incorporation of ADMSs in MOFs and MOF-derived materials for energy-conversion applications.

8.
Small ; 13(41)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28910511

RESUMO

Heterometallic metal-organic frameworks (MOFs) are constructed from two or more kinds of metal ions, while still remaining their original topologies. Due to distinct reaction kinetics during MOF formation, partial distribution of different metals within a single MOF crystal can lead to sophisticated heterogeneous nanostructures. Here, this study reports an investigation of reaction kinetics for different metal ions in a bimetallic MOF system, the ZIF-8/67 (M(2-mIM)2 , M = Zn for ZIF-8, and Co for ZIF-67, 2-mIM = 2-methylimidazole), by in situ optical method. Distinct kinetics of the two metals forming single-component MOFs are revealed, and when both Co and Zn ions are present in the starting solution, homogeneous distributions of the two metals are only achieved at high Co/Zn ratio, while at low Co/Zn ratio concentration gradient from Co-rich cores to Zn-rich shells is observed. Further, by adding the two metals in sequence, more sophisticated structures are achieved. Specifically, when Co2+ is added first, ZIF-67@ZIF-8/67 core-shell nanocrystals are achieved with tunable core/shell thickness ratio depending on the time intervals; while when Zn2+ is added first, only agglomerates of irregular shape form due to the weak nucleation ability of Zn2+ .

9.
Opt Express ; 21(14): 16578-83, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23938509

RESUMO

n-ZnO/p-GaN heterojunction light emitting diodes with different interfacial layers were fabricated by pulsed laser deposition. The electroluminescence (EL) spectra of the n-ZnO/p-GaN diodes display a broad blue-violet emission centered at 430 nm, whereas the n-ZnO/ZnS/p-GaN and n-ZnO/AlN/p-GaN devices exhibit ultraviolet (UV) emission. Compared with the AlN interlayer, which is blocking both electron and hole at hetero-interface, the utilization of ZnS as intermediate layer can lower the barrier height for holes and keep an effective blocking for electron. Thus, an improved UV EL intensity and a low turn-on voltage (~5V) were obtained. The results were studied by peak-deconvolution with Gaussian functions and were discussed using the band diagram of heterojunctions.


Assuntos
Gálio/química , Iluminação/instrumentação , Medições Luminescentes/instrumentação , Compostos de Selênio/química , Semicondutores , Compostos de Zinco/química , Óxido de Zinco/química , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Raios Ultravioleta
10.
Medicine (Baltimore) ; 101(25): e29371, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35758368

RESUMO

ABSTRACT: Deciding if patients with small (≤1 cm), node-negative, human epidermal growth factor receptor 2 (HER2) positive breast cancer should receive adjuvant systemic therapy remains a challenge. No randomized clinical trials have examined the efficacy of trastuzumab in this setting. This prospective observational study aimed to investigate the choice of adjuvant systemic therapy in clinical practice in China.We prospectively collected data from patients with HER-2 positive breast cancer (less than 1 cm and node negative) patients who underwent breast cancer surgery at Shanxi Provincial People's Hospital Breast Center from January 1, 2017 to December 31, 2019, and retrospectively investigated the association between baseline clinicopathological features and treatment strategy, cardiotoxicity, and disease outcome.Of 168 eligible patients, 102 (60.7%) received adjuvant systemic therapy with trastuzumab (AST+T), 47 (28%) received adjuvant systemic therapy without trastuzumab (AST) and 19 (11.3%) did not receive adjuvant systemic therapy. Multivariate logistic regression analysis demonstrated that age, tumor size and hormone receptor status were significantly associated with treatment choice. Three-year invasive disease-free survival probability was 100%, 97.9% and 89.5% with AST+T, AST, and no therapy, respectively (P < .001).The majority of patients (60.7%) with pT1a-b pN0 HER2 positive breast cancer received adjuvant systemic therapy with trastuzumab, whereas only 11.3% did not receive any adjuvant systemic therapy. Tumor size, age and hormone receptor status influenced treatment choice. The 3-year invasive disease-free survival probability was significantly higher for patients who received adjuvant systemic therapy with trastuzumab compared with those who did not receive adjuvant systemic therapy. Cardiac adverse events were rare.


Assuntos
Neoplasias da Mama , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/patologia , Quimioterapia Adjuvante , Estudos de Coortes , Intervalo Livre de Doença , Feminino , Hormônios/uso terapêutico , Humanos , Receptor ErbB-2/metabolismo , Estudos Retrospectivos , Trastuzumab
11.
Front Neurorobot ; 16: 808147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574226

RESUMO

To provide reliable input for obstacle avoidance and decision-making, unmanned surface vehicles (USV) need to have the function of sensing the position of other USV targets in the process of cooperation and confrontation. Due to the small size of the target and the interference of the water and sky background, the current algorithms are prone to missed detection and drift problems when detecting and tracking USV. Therefore, in this paper, we propose a fusion algorithm of detection and tracking for USV targets. To solve the problem of vague features in the single-frame image, high-resolution and deep semantic information are obtained through a cross-stage partial network, and the anchor and convolution structure in the network has been improved given the characteristics of USV; besides, to meet the real-time requirements, the detected target is quickly tracked through correlation filtering, and the correlation characteristics of multi-frame images are obtained; then, the correlation characteristics are used to significantly reduce missed detection, and the tracking drift problems are corrected, combined with high-resolution semantic features of a single frame. Finally, the fusion algorithm is designed. In this paper, we constructed a picture dataset and a video dataset to test the effect of detection, tracking, and fusion algorithm separately, which proves the superiority of the fusion algorithm in this paper. The results show that, compared with a single detection algorithm and tracking algorithm, the fusion one can increase the success rate by more than 10%.

12.
Biosci Rep ; 40(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32441301

RESUMO

PURPOSE: To investigate the regulation mechanism of long non-coding RNA (lncRNA) plasmocytoma variant translocation 1 (PVT1) in ovarian cancer (OC). METHODS: The levels of PVT1, microRNA (miR)-543, serpin peptidase inhibitor-clade I (neuroserpin)-member 1 (SERPINI1) in OC tissues and OVCAR-3, A2780, TOV-112D of OC cell lines were detected by quantitative real-time PCR (qRT-PCR) and Western Blot (WB). Cell proliferation, migration, invasion, apoptosis and the regulatory relationship between genes and target genes were analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Transwell, flow cytometry and dual luciferase reporter (DLR). The OC patients were followed up for 5 years to analyze the relationship between PVT1 and 5-year overall survival (OS). RESULTS: In contrast with miR-543, PVT1 and SERPINI1 were highly expressed in OC tissues and cell lines, and high levels of PVT1 were significantly associated with lower 5-year OS of patients. Down-regulating PVT1 not only inhibited the malignant proliferation, migration and invasion of OC cells, but promoted cell apoptosis. PVT1 regulated miR-543 in a targeted manner, and its overexpression could attenuate the anticancer effect of miR-543 on OC cells. In addition, miR-543 also directly targeted SERPINI1, and miR-543 knockdown weakened the inhibitory effect of down-regulated SERPINI1 on OC progression. Furthermore, we found that PVT1 acted as a competitive endogenous RNA to sponge miR-543, thereby regulating the expression of SERPINI1. CONCLUSION: PVT1 can mediate the molecular mechanism of OC by miR-543/SERPINI1 axis regulatory network, which is a new therapeutic direction for OC.


Assuntos
MicroRNAs/metabolismo , Neuropeptídeos/metabolismo , Neoplasias Ovarianas/metabolismo , RNA Longo não Codificante/metabolismo , Serpinas/metabolismo , Adulto , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Neuropeptídeos/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Prognóstico , RNA Longo não Codificante/genética , Serpinas/genética , Transdução de Sinais , Neuroserpina
13.
Sci Rep ; 10(1): 10007, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561819

RESUMO

Primary central nervous system lymphomas (PCNSLs) and high-grade gliomas (HGGs) arising in the cerebellum is extremely low, making the differential diagnosis difficult or even impossible. The purpose of this study was to define the MR features of cerebellar PCNSL in immunocompetent patients, and to determine whether a combination of conventional MR and DW imaging can assist in the differentiation of PCNSLs and HGGs. Twelve PCNSLs and 15 HGGs confirmed by pathological analysis were retrospectively identified. The apparent diffusion coefficient (ADC) and conventional MRI parameters were compared for differences between PCNSL and HGG groups using the independent sample t test or chi-square test. Both ADCmin and ADCtotal values were lower in the PCNSL group than those in the HGG group (ADCmin: 0.53 × 10-3 vs. 0.83 × 10-3 mm2/sec, P < 0.001; ADCtotal: 0.66 × 10-3 vs. 0.98 × 10-3 mm2/sec, P = 0.001). As for conventional MR features, there were significant difference in the tumor size, enhancement patterns, the presence of cystic changes, edema degree and streak-like edema (all P < 0.01); but there were no significant difference in lesion type, the presence of bleeding, and involvement of brain surface between two groups (P = 0.554, 0.657 and 0.157, respectively). The results revealed that several conventional MR features, including enhancement patterns, branch-like enhancement and streak-like edema may be useful for the differentiation of PCNSL and HGG in cerebellum and, when combined with ADC values, further improve the discriminating ability.


Assuntos
Neoplasias Cerebelares/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Glioma/diagnóstico por imagem , Linfoma não Hodgkin/diagnóstico por imagem , Adulto , Idoso , Neoplasias Cerebelares/patologia , Cerebelo/patologia , Diagnóstico Diferencial , Imagem de Difusão por Ressonância Magnética , Feminino , Glioma/patologia , Humanos , Linfoma não Hodgkin/patologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
14.
Brain Behav ; 10(4): e01583, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32146731

RESUMO

OBJECTIVES: To explore the characteristics of IDH and TERT promoter mutations in gliomas in Chinese patients. METHODS: A total of 124 Chinese patients with gliomas were enrolled to study the frequencies of mutations in isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase promoter (TERTp). Among the 124 patients, 59 patients were enrolled to study the classification of gliomas based on mutations in IDH and TERTp. RESULTS: Isocitrate dehydrogenase mutations are positively correlated with a good prognosis but mutations in TERTp cannot predict prognoses independently. The combined analysis of the mutations of IDH and TERTp can predict the prognosis more accurately. Patients with IDH and TERTp glioma mutations have the best prognosis, followed by only IDH mutation patients and only TERTp mutation patients, which have the worst prognosis. IDH and TERTp mutations occur frequently in males, younger patients or lower-grade patients. In contrast, only TERTp mutations occur frequently in females, older patients or higher-grade patients. CONCLUSIONS: Patients with IDH and TERTp glioma mutations have the best prognosis, and only IDH mutation patients and only TERTp mutation patients have the worst prognosis. Moreover, the molecular classification of gliomas by mutations of IDH and TERTp is not suitable for pediatric patients.


Assuntos
Neoplasias Encefálicas/genética , Isocitrato Desidrogenase/genética , Mutação , Regiões Promotoras Genéticas , Telomerase/genética , Adolescente , Adulto , Idoso , Neoplasias Encefálicas/patologia , Criança , Pré-Escolar , China , Feminino , Glioma/genética , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto Jovem
15.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(12): 3223-7, 2009 Dec.
Artigo em Zh | MEDLINE | ID: mdl-20210137

RESUMO

For electricity induced luminescence of thin film, the heterojunction luminescence devices were produced by compounding the organic polymer of MEH-PPV and inorganic semiconductor SiO2. Utilizing the super liner characteristic of SiO2 as acceleration, multiplication and ionization, the solid-state cathodoluminescence was realized. The obvious feature of electroluminescence in the luminescence device with ITO/SiO2/MEH-PPV/SiO2/Al is that it has two spectral bands. In the electroluminescence spectra, the authors obtained both blue emission (403 nm)and excition luminescence (583 nm) of MEH-PPV and the intensity of the long and short wave peak changing with the voltage. Only long wave peak is observed when the voltage is low and only short wave peak appears when the voltage is high. It is the typical feature that the solid-state cathodoluminescence has two spectral bands. It is a new light emission, which has new mechanism and is important for the luminescence. One of the important aspects of the solid state cathodoluminescence theory is the super liner characteristic of SiO2. In the present paper, the luminescence dynamics of solid-state cathodoluminescence, the super liner characteristic of SiO2 in the higher electric field and the influences of thickness on it were studied.

16.
Onco Targets Ther ; 12: 101-111, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30588034

RESUMO

OBJECTIVE: This study aims to investigate the functional role of long noncoding RNA SNHG15 in epithelial ovarian cancer (EOC). MATERIALS AND METHODS: The expression of SNHG15 was measured in EOC cells and tissues using qRT-PCR. The correlation of SNHG15 expression and the clinicopathological characters was statistically analyzed. The prognosis of patients with different clinical features in the high/low SNHG15 expression groups were calculated. Moreover, univariate and multivariate Cox regression analyses were performed to identify the risk factors for poor overall survival (OS) and progression-free survival (PFS). The effect of SNHG15 on the migration and invasion was evaluated using Transwell and Matrigel, respectively. The proliferation ability of EOC cells was tested using colony formation and MTT assay. The influence of SNHG15 on the cisplatin resistance was detected by measuring cell inhibition rate and cell viability. RESULTS: SNHG15 was upegulated in EOC cells and tissues. High SNHG15 expression was correlated with EOC progression and predicted poor OS and PFS in different subgroups of EOC patients. Moreover, multivariate Cox regression analysis defined high SNHG15 expression as an independent risk factor for poor OS and PFS. Furthermore, functional assays showed that the overexpression of SNHG15 promoted migration and invasion, while the loss of SNHG15 suppressed migration and invasion. Furthermore, the proliferation of EOC cells was improved after the ectopic expression of SNHG15, which was suppressed with SNHG15 deficiency. In addition, cisplatin-resistant EOC cells were established for detecting the effect of SNHG15 on EOC chemoresistance. The results showed that cisplatin-resistant EOC cells exhibited much higher levels of SNHG15 expression than controls, and SNHG15 contributed to the chemoresistance of EOC cells. CONCLUSION: This study confirms that SNHG15 contributes to the migration, invasion, proliferation, and chemoresistance of EOC. SNHG15 may serve as a potential therapeutic target and prognostic biomarker of EOC patients.

17.
Adv Sci (Weinh) ; 6(8): 1802005, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-31139557

RESUMO

Rational design of metal compounds in terms of the structure/morphology and chemical composition is essential to achieve desirable electrochemical performances for fast energy storage because of the synergistic effect between different elements and the structure effect. Here, an approach is presented to facilely fabricate mixed-metal compounds including hydroxides, phosphides, sulfides, oxides, and selenides with well-defined hollow nanocage structure using metal-organic framework nanocrystals as sacrificial precursors. Among the as-synthesized samples, the porous nanocage structure, synergistic effect of mixed metals, and unique phosphide composition endow nickel cobalt bimetallic phosphide (NiCo-P) nanocages with outstanding performance as a battery-type Faradaic electrode material for fast energy storage, with ultrahigh specific capacity of 894 C g-1 at 1 A g-1 and excellent rate capability, surpassing most of the reported metal compounds. Control experiments and theoretical calculations based on density functional theory reveal that the synergistic effect between Ni and Co in NiCo-P can greatly increase the OH- adsorption energy, while the hollow porous structure facilitates the fast mass/electron transport. The presented work not only provides a promising electrode material for fast energy storage, but also opens a new route toward structural and compositional design of electrode materials for energy storage and conversion.

18.
Adv Mater ; 30(37): e1702891, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29164712

RESUMO

Metal-organic frameworks (MOFs), a new class of crystalline porous organic-inorganic hybrid materials, have recently attracted increasing interest in the field of energy storage and conversion. Herein, recent progress of MOFs and MOF composites for energy storage and conversion applications, including photochemical and electrochemical fuel production (hydrogen production and CO2 reduction), water oxidation, supercapacitors, and Li-based batteries (Li-ion, Li-S, and Li-O2 batteries), is summarized. Typical development strategies (e.g., incorporation of active components, design of smart morphologies, and judicious selection of organic linkers and metal nodes) of MOFs and MOF composites for particular energy storage and conversion applications are highlighted. A broad overview of recent progress is provided, which will hopefully promote the future development of MOFs and MOF composites for advanced energy storage and conversion applications.

19.
ACS Appl Mater Interfaces ; 10(36): 30460-30469, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30101584

RESUMO

Oxygen reduction and evolution reactions as two important electrochemical energy conversion processes in metal-air battery devices have aroused widespread concern. However, synthesis of low-cost non-noble metal-based bifunctional high-performance electrocatalysts is still a great challenge. In this work, we report on the design and synthesis of a novel Co-B/N codoped carbon with core-shell-structured nanoparticles aligned on graphene nanosheets (denoted as CoTIB-C/G) derived from cobalt tetrakis(1-imidazolyl)borate (CoTIB) and graphene oxide hybrid template. Compared with pristine CoTIB-derived bulk structure (CoTIB-C), CoTIB-C/G particles with an average size of 25 nm are uniformly dispersed on highly conductive graphene sheets in the hybrid material, thus dramatically increasing the utilization efficiency and activity of the active components upon oxygen reduction and evolution. After all, because of the "barrier effect" of graphene sheets toward CoTIB-C/G and the synergistic effect between Co nanoparticles and carbon shells linked to the graphene sheets, as well as heteroatoms' doping effect, the as-obtained bifunctional electrocatalyst exhibits remarkable oxygen reduction and evolution reaction activities in alkaline media, indicating its feasibility and potential in practical applications.

20.
Front Chem ; 6: 299, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30094230

RESUMO

Pulse electrochemically synthesis of a series of core-shell structured Ir@Pt/C catalysts in cathode catalysts layer are achieved to fabricate membrane electrode assemblies (MEA) with cathode ultra-low Pt loading. The single cell performance of the MEAs in a H2/air PEMFC greatly rely on the sizes of the Ir core nanoparticle, and the optimum activity occurs with Ir core size of 4.1 nm. The cathode MEA with core-shell structured catalysts with optimal Ir core size exhibited excellent performance in a H2/air single fuel cell, comparable to that of a commercial Pt/C MEA (Johnson Matthey 40% Pt), even though the Pt loading in Ir@Pt was only 40% that of the commercial Pt cathode (0.04 vs. 0.1 mg cm-2). The catalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy. Based on the characterization results, especially from XPS, we suggest that the effect of Ir core particle size on MEA performance may arise from the interactions between the Pt shell and the Ir core. The XPS results showed that the Ir@Pt/C-300 catalyst has the highest Pt0 fraction among the four tested samples. This work demonstrates the alternative to enhance the cathode performance in single cell of Pt-based core-shell structured catalysts by varying size of the core metal under the Pt shell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA