Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 39(29): 10259-10269, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37454390

RESUMO

Revealing drug-protein interaction is highly important to select a drug candidate with improved drug-like properties in the early stages of drug discovery. This highlights the urgent need to develop assays that enable the analysis of drug-protein interaction with high speed. Herein, this purpose was realized by the development of an affinity chromatographic method with a two-fold higher speed than typical assays like frontal analysis and zonal elution. The method involved synthesis of a stationary phase by immobilizing poly(ADP-ribose) polymerase-1 (PARP1) onto macroporous silica gel through a one-step bioorthogonal reaction, characterization of mutual displacement interaction of two canonical drugs to the immobilized PARP1, determination of the interaction between three (iniparib, rucaparib, and olaparib) drugs and the protein, and validation of these parameters by typical frontal analysis. The numbers of binding sites on the column were (2.85 ± 0.05) × 10-7, (1.89 ± 0.71) × 10-6, and (1.49 ± 0.06) × 10-7 M for iniparib, rucaparib, and olaparib, respectively. On these sites, the association constants of the three drugs to the protein were (9.85 ± 0.56) × 104, (2.85 ± 0.34) × 104, and (1.07 ± 0.35) × 105 M-1. The determined parameters presented a good agreement with the calculation by typical frontal analyses, which indicated that the current continuous competitive frontal analysis method was reliable for determining drug-protein interaction. Application of the methods was achieved by screening tubeimosides I and II as the bioactive compounds against breast cancer in Bolbostemma paniculatum. Their mechanism may be the interference of DNA repair via down-regulating PARP1 and meiotic recombination 11 expressions, thus leading to oncogene mutations and death of cancer cells. The method was high speed since it allowed simultaneous determination of binding parameters between two drugs and a protein with a smaller number of experiments to be performed. Such a feature made the method an attractive alternative for high-speed analysis of drug-protein interaction or the other bindings in a binary system.


Assuntos
Benzamidas , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Cromatografia de Afinidade , Sítios de Ligação
2.
Int J Mol Sci ; 19(10)2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30336596

RESUMO

Senna and its main components sennosides are well-known effective laxative drugs and are used in the treatment of intestinal constipation in the world. Their potential side effects have attracted more attention in clinics but have little scientific justification. In this study, senna extract (SE), sennosides (SS), and sennoside A (SA) were prepared and used to generate diarrhea rats. The diarrhea rats were investigated with behaviors, clinical signs, organ index, pathological examination, and gene expression on multiple aquaporins (Aqps) including Aqp1, Aqp2, Aqp3, Aqp4, Aqp5, Aqp6, Aqp7, Aqp8, Aqp9, and Aqp11. Using qRT-PCR, the Aqp expression profiles were constructed for six organs including colon, kidney, liver, spleen, lung, and stomach. The Aqp alteration profiles were characterized and was performed with Principle Component Analysis (PCA). The SE treatments on the rats resulted in a significant body weight loss (p < 0.001), significant increases (p < 0.001) on the kidney index (27.72%) and liver index (42.55%), and distinguished changes with up-regulation on Aqps expressions in the kidneys and livers. The SS treatments showed prominent laxative actions and down regulation on Aqps expression in the colons. The study results indicated that the SE had more influence/toxicity on the kidneys and livers. The SS showed more powerful actions on the colons. We suggest that the caution should be particularly exercised in the patients with kidney and liver diseases when chronic using senna-based products.


Assuntos
Aquaporinas/genética , Diarreia/induzido quimicamente , Perfilação da Expressão Gênica , Extrato de Senna/efeitos adversos , Animais , Aquaporinas/metabolismo , Colo/parasitologia , Diarreia/genética , Diarreia/patologia , Regulação da Expressão Gênica , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Especificidade de Órgãos , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Senosídeos , Redução de Peso/efeitos dos fármacos
3.
J Chromatogr A ; 1730: 465037, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38889580

RESUMO

Protein functionalized surface has the potential to develop new assays for determining the drug-like properties of potential compounds and discovering specific partners of G protein-coupled receptors (GPCRs). However, a universal method for purifying and immobilizing functional GPCRs has remained elusive. To this end, we developed a general and rapid way to purify and immobilize ß2-adrenergic receptor (ß2AR) by silicon-specific peptide. We screened CotB1p as a tag from six silica-binding peptides (minTBP-1, CotB1p, SB7, Car9, and Si4-1) by examining their affinity to macroporous silica gel. We investigated the adsorption and desorption of CotB1p-tagged ß2-adrenoceptor (ß2AR-CotB1p) under diverse conditions to propose a protocol for receptor purification and immobilization. Under optimized conditions, ß2AR immobilization were achieved by directly immersing cell lysates harboring the receptor with silica gel, and the elution of the receptor without demonstratable contaminants was realized by including l-arginine/L-lysine in the elutes. This allows purification of the receptor from Escherichia coli (E.coli) lysates with a purity of 95 %. The immobilized receptor was utilized as a stationary phase to reveal the tag impact on ligand-binding outputs by comparing the CotB1p-strategy with a typical covalent method. The KAs of salbutamol, chlorprenaline, tulobuterol, and terbutaline on ß2AR-CotB1p column were 1.26 × 106, 6.59 × 106, 7.90 × 106, and 8.97 × 105 M-1 respectively, which were two orders of magnitude higher than those on the Halo-ß2AR column. The whole immobilization was accomplished within 30 min without the requirement of any special treatment, resulting in enhanced accuracy for determining receptor-ligand binding parameters. Taken together, CotB1p-mediated strategy is simple, rapid, and universal for purification or immobilization of unstable biomolecules like GPCRs for analytical and biological applications.


Assuntos
Escherichia coli , Receptores Adrenérgicos beta 2 , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/química , Escherichia coli/química , Peptídeos/química , Peptídeos/metabolismo , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Adsorção , Ligação Proteica
4.
J Chromatogr A ; 1730: 465141, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38986402

RESUMO

Functional protein immobilization forms the basis for bio-detections. A series of one-point, site-specific immobilization methods have been developed, however, it still remains as a challenge how to avoid the proteins to move in all directions as well as conveniently regenerate the bio-devices. Herein, we have developed a bivalent affinity binding-inspired method for PPARγ immobilization using DNA aptamer and nickel-nitrilotriacetic acid (Ni2+-NTA) chelation. The specific DNA aptamer (Apt 2) was selected by an on-column systematic evolution of ligands by exponential enrichment (SELEX) method with affinity of (1.57 ± 0.15) × 105 M-1, determined by isothermal titration calorimetry (ITC). Apt 2 and nickel-nitrilotriacetic acid (Ni2+-NTA) were modified on macroporous silica gels via L-α-allylglycine as a linker. They respectively interacted with PPARγ and 6×His tag via bivalent affinity binding for the receptor immobilization. After comprehensive surface characterization, PPARγ was proved to be successful immobilized. Chromatographic studies revealed that the immobilized PPARγ has conformation selectivity, which discriminated agonist and antagonist of the receptor. Ligand-binding parameters (affinity and rate constant) of four agonists (rosiglitazone, pioglitazone, troglitazone, and magnolol) with PPARγ were determined. Troglitazone showed the lowest dissociation rate constant. The binding affinities (3.28 × 107, 1.91 × 106, 2.25 × 107, and 2.43 × 107 M-1) were highly consistent with the data obtained using purified receptor in solution (2.16 × 107, 4.52 × 106, 1.20 × 107, and 1.56 × 107 M-1), offering reliable bio-detection method for PPARγ and its ligands. Due to the biocompatibility of nuclear receptor with DNA, it is conceivable that the bivalent affinity-based method will be a general method for the immobilization of other nuclear receptors, which may provide selective conformation and improved ligand-binding activity for the receptors.


Assuntos
Aptâmeros de Nucleotídeos , PPAR gama , PPAR gama/química , PPAR gama/metabolismo , Ligantes , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Ligação Proteica , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Ácido Nitrilotriacético/química , Ácido Nitrilotriacético/análogos & derivados , Humanos , Calorimetria
5.
J Chromatogr A ; 1718: 464715, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330726

RESUMO

G protein-coupled receptors (GPCRs) are one of the most prominent targets for drug discovery. Immobilizing GPCRs has proven to be an effective strategy for expanding the utility of GPCRs into nonbiological contexts. However, traditional strategies of immobilizing GPCRs have been severely challenged due to the loss of receptor function. Here, we reported a novel and general approach to realize the label-free and site-selective immobilization of 5-hydroxytryptamine 1A receptor (5-HT1AR) and the application in developing a chromatographic method with improved specificity for pursuing 5-HT1AR ligands from natural products. This method involved the use of a clickable non-natural amino acid, O-allyl-L-tyrosine (O-ALTyr) to immobilize the receptor onto thiol-functionalized silica gels through a 'thiol-ene' click chemistry, which allowed us to avoid the purification step and directly immobilize 5-HT1AR on silica gels. The immobilized receptor was characterized using immunofluorescence assay, and receptor-ligand interaction analysis was conducted through frontal analysis. To test the feasibility of the immobilized 5-HT1ARO-ALTyr in complex matrices, bioactive compounds in Ziziphi Spinosae Semen (ZSS) were screened and their interaction with the receptor was assessed using zonal elution. Our findings indicated that immobilizing the receptor through nnAAs effectively minimizes the chromatographic peak tailing and broadening of specific ligands, leading to a significant improvement in chromatographic performance. The association constants of the three ligands to 5-HT1AR were approximately one order of magnitude greater than those of Halo-tag attachment. These results demonstrated that the immobilized 5-HT1AR exhibits high specificity and the ability to recognize receptor ligands from complex matrices. This allowed us to identify magnoflorine (Mag) as a potential ligand of 5-HT1AR from ZSS extract. In vivo assay also proved that Mag presented a promising anxiolytic effect by promoting the expression of 5-HT1AR in mice brain. The above findings pointed to the fact that the immobilized 5-HT1AR affinity chromatographic strategy relying on the site-specific encoded non-natural amino acid is a powerful alternative for precisely determining the drug-protein interaction and discovering the specific ligand of GPCRs from complex matrixes.


Assuntos
Aminoácidos , Receptor 5-HT1A de Serotonina , Camundongos , Animais , Ligantes , Serotonina , Receptores Acoplados a Proteínas G , Cromatografia de Afinidade/métodos , Tirosina , Compostos de Sulfidrila , Dióxido de Silício , Géis
6.
J Chromatogr A ; 1715: 464606, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38154257

RESUMO

Characterization of the drug-target interactions is pivotal throughout the whole procedure of drug development. Most of the current assays, particularly, chromatographic methods lack the capacity to reveal drug adsorption on the muti-target surface. To this end, we derived a reliable and workable mathematical equation for revealing drug bindings to dual targets on the heterogeneous surface starting from the mass balance equation. The derivatization relied on the correlation of drug injection amounts with their retention factors. Experimental validation was performed by determining the binding parameters of three canonical drugs on a heterogeneous surface, which was fabricated by fusing angiotensin receptor type I and type II receptors (AT1R and AT2R) at the terminuses of circularly permuted HaloTag (cpHaloTag) and immobilizing the whole fusion protein onto 6-bromohexanoic acid modified silica gel. We proved that immobilized AT1R-cpHalo-AT2R maintained the original ligand- and antibody-binding activities of the two receptors in three weeks. The association constants of valsartan, candesartan, and telmisartan to AT1R were (6.26±0.14) × 105, (9.66±0.71) × 105, and (3.17±0.03) × 105 L/mol. In the same column, their association constants to AT2R were (1.25±0.04) × 104, (2.30±0.08) × 104, and (8.51±0.06) × 103 L/mol. The patterns of the association constants to AT1R/AT2R (candesartan>valsartan>telmisartan) were in good line with the data by performing nonlinear chromatography on control columns containing immobilized AT1R or AT2R alone. This provided proof of the fact that the derivatization allowed the determination of drug bindings on the heterogeneous surface with the utilization of a single series of injections and linear regression. We reasoned that is simple enough to model the bindings of drug adsorption on commercially available adsorbents in fundamental or industrial fields, thus having the potential to become a universal method for analyzing the bindings of a drug to the heterogeneous surface containing multiple targets.


Assuntos
Benzimidazóis , Compostos de Bifenilo , Receptor Tipo 1 de Angiotensina , Receptor Tipo 2 de Angiotensina , Tetrazóis , Telmisartan , Receptor Tipo 2 de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/química , Valsartana , Cromatografia
7.
CNS Neurosci Ther ; 29(5): 1290-1299, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36708133

RESUMO

AIMS: N-methyl-D-aspartic acid (NMDA) receptors play subunit-specific role in central neuronal development. However, insights into the pharmacological modulation of NMDA receptors were mainly lack of subunit and synaptic selectivity. The purpose of the present study was to develop a novel strategy to rapidly recognize NMDA subunit 2A (NMDA-2A) ligands from natural products and provide subunit-selective drug candidates for Alzheimer's disease (AD). METHODS: The recombinant NMDA-2A containing a tag of epidermal growth factor receptor (EGFR) was expressed in Escherichia coli cells and immobilized on ibrutinib-modified microspheres based on the specific reaction between EGFR and its inhibitor ibrutinib. A novel affinity stationary phase was synthesized to screen NMDA-2A ligands from Gardenia jasminoides Ellis. RESULTS: The immobilized receptor column exhibited excellent receptor selectivity and ligand-binding activity. Crocetin was screened by using this method. In a cellular model of AD, the protein level of NMDA-2A was significantly decreased compared with the control group, while treatment with crocetin significantly increased NMDA-2A level in a concentration-dependent manner, confirming that crocetin could bind to NMDA-2A in vitro. CONCLUSION: In the present study, we developed a reliable method for the rapid identification of NMDA-2A ligands from natural products, which may be used as a platform for new drug discovery to generate high-quality drug candidates.


Assuntos
Doença de Alzheimer , Produtos Biológicos , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , N-Metilaspartato , Ligantes
8.
Food Chem ; 331: 127363, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32590269

RESUMO

Rhubarb is a popular food in Europe with laxative properties attributed to anthraquinones. Long term usage of rhubarb anthraquinones has been linked to colonic toxicity, including the formation of melanosis coli, which is associated with increased risk of colon cancer. The major purgative anthraquinone in rhubarb is thought to be sennoside A, which is metabolised by colonic microflora. Here, we sought to identify the toxic metabolite responsible for melanosis coli in rats dosed with rhubarb anthraquinones for up to 90 days. Three metabolites were detected in rat faeces using HPLC. Of these, rhein was identified as the metabolite that accumulated most over time. Fecal flora from treated rats were capable of greater biotransformation of sennoside A to rhein compared to that from control rats. Cell culture experiments suggested that apoptosis and autophagy induced by rhein is the likely mechanism of chronic toxicity of rhubarb anthraquinones.


Assuntos
Antraquinonas/farmacocinética , Antraquinonas/toxicidade , Rheum/química , Animais , Antraquinonas/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Biotransformação , Catárticos/química , Catárticos/farmacologia , Cromatografia Líquida de Alta Pressão , Colo/efeitos dos fármacos , Colo/patologia , Diarreia/induzido quimicamente , Fezes/química , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Células HT29 , Humanos , Laxantes/farmacocinética , Laxantes/toxicidade , Masculino , Ratos Sprague-Dawley , Senosídeos/farmacocinética , Senosídeos/toxicidade
9.
Anal Chim Acta ; 1126: 72-81, 2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32736727

RESUMO

The amount of protein thiols play a crucial role in maintaining the cellular redox homeostasis and have significant implications to indicate a series of diseases. Therefore, it is necessary to develop an ideal probe for protein thiol detection in a simple and readily implementable method. Consequently, a water-soluble and incubate-free fluorescent environment-sensitive probe DMTs-OCC was synthesized using 7-diethylamincoumarin as the fluorophore and 4-(5-Methanesulfonyl- [1,2,3,4]tetrazol-1-yl)-phenol (MSTP) as a thiol receptor reagent. The blue-shift emission spectra of probe DMTs-OCC was observed by ultrafast binding to protein sulfhydryl groups from the excited intramolecular charge transfer (ICT) to the twisted intramolecular charge transfer (TICT) conversion process in aqueous solution. The experimental results showed that probe DMTs-OCC exhibited an excellent selectivity to protein thiols and biocompatibility in aqueous solution, as well as terrific cell membrane permeability which enabled the successful visualization of BSA protein thiol in living cells. Moreover, no excess probe was cleaned and no incubation time was needed in cell experiments. Therefore, it could provide a new method to the construction of fluorescent probes for protein thiols labelling and visualization.


Assuntos
Corantes Fluorescentes , Compostos de Sulfidrila , Proteínas , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA