Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Anal Biochem ; 647: 114664, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35300971

RESUMO

Warfarin is a common first line anticoagulant with a narrow therapeutic window. Because of the large blood volume needed, previous warfarin determination methods were not applicable to small animals, such as mice. To reduce the number of small animals used needed, we developed and validated a sensitive rapid assay for the simultaneous detection of warfarin enantiomers in mouse dried blood spot (DBS) samples. Analytes were extracted by tert-butyl methyl ether and then separated by a chiral Cellulose-1 column with a mobile phase of 75% acetonitrile (containing 0.1% formic acid). The total chromatographic run time was 3 min. Negative mode electrospray ionization was used for MS/MS detection, where the monitored ion transitions were m/z 307.1 â†’ 161.0 and 341.1 â†’ 284.0 for warfarin and coumachlor (internal standard) respectively. The calibration curves were linear with a correlation coefficient of ≥0.994 for both enantiomers over a concentration range of 10-1000 ng/mL. The satisfactory accuracy and adequate reproducibility of both warfarin enantiomers were validated in terms of intra- and interday precision with mouse DBS cards. The samples were stable at room temperature for at least 14 days. The validated method was applied to a pharmacokinetic study in mice.


Assuntos
Espectrometria de Massas em Tandem , Varfarina , Animais , Calibragem , Cromatografia Líquida de Alta Pressão/métodos , Teste em Amostras de Sangue Seco/métodos , Camundongos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
2.
Bioinformatics ; 34(20): 3547-3556, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29718114

RESUMO

Motivation: Benefiting from high-throughput experimental technologies, whole-genome analysis of microRNAs (miRNAs) has been more and more common to uncover important regulatory roles of miRNAs and identify miRNA biomarkers for disease diagnosis. As a complementary information to the high-throughput experimental data, domain knowledge like the Gene Ontology and KEGG pathway is usually used to guide gene function analysis. However, functional annotation for miRNAs is scarce in the public databases. Till now, only a few methods have been proposed for measuring the functional similarity between miRNAs based on public annotation data, and these methods cover a very limited number of miRNAs, which are not applicable to large-scale miRNA analysis. Results: In this paper, we propose a new method to measure the functional similarity for miRNAs, called miRGOFS, which has two notable features: (i) it adopts a new GO semantic similarity metric which considers both common ancestors and descendants of GO terms; (i) it computes similarity between GO sets in an asymmetric manner, and weights each GO term by its statistical significance. The miRGOFS-based predictor achieves an F1 of 61.2% on a benchmark dataset of miRNA localization, and AUC values of 87.7 and 81.1% on two benchmark sets of miRNA-disease association, respectively. Compared with the existing functional similarity measurements of miRNAs, miRGOFS has the advantages of higher accuracy and larger coverage of human miRNAs (over 1000 miRNAs). Availability and implementation: http://www.csbio.sjtu.edu.cn/bioinf/MiRGOFS/. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
MicroRNAs/análise , Humanos , Espaço Intracelular/metabolismo , MicroRNAs/metabolismo , Fenótipo , Semântica , Software
3.
Mol Biomed ; 4(1): 45, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38032415

RESUMO

The intestinal microbiota is considered to be a forgotten organ in human health and disease. It maintains intestinal homeostasis through various complex mechanisms. A significant body of research has demonstrated notable differences in the gut microbiota of patients with gastrointestinal tumours compared to healthy individuals. Furthermore, the dysregulation of gut microbiota, metabolites produced by gut bacteria, and related signal pathways can partially explain the mechanisms underlying the occurrence and development of gastrointestinal tumours. Therefore, this article summarizes the latest research progress on the gut microbiota and gastrointestinal tumours. Firstly, we provide an overview of the composition and function of the intestinal microbiota and discuss the mechanisms by which the intestinal flora directly or indirectly affects the occurrence and development of gastrointestinal tumours by regulating the immune system, producing bacterial toxins, secreting metabolites. Secondly, we present a detailed analysis of the differences of intestinal microbiota and its pathogenic mechanisms in colorectal cancer, gastric cancer, hepatocellular carcinoma, etc. Lastly, in terms of treatment strategies, we discuss the effects of the intestinal microbiota on the efficacy and toxic side effects of chemotherapy and immunotherapy and address the role of probiotics, prebiotics, FMT and antibiotic in the treatment of gastrointestinal tumours. In summary, this article provides a comprehensive review of the pathogenic mechanisms of and treatment strategies pertaining to the intestinal microbiota in patients with gastrointestinal tumours. And provide a more comprehensive and precise scientific basis for the development of microbiota-based treatments for gastrointestinal tumours and the prevention of such tumours.

4.
Int J Surg ; 109(12): 3861-3871, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37598356

RESUMO

BACKGROUND AND OBJECTIVES: Due to the high individual variability of anticoagulant warfarin, this study aimed to investigate the effects of vitamin K concentration and gut microbiota on individual variability of warfarin in 246 cardiac surgery patients. METHODS: The pharmacokinetics and pharmacodynamics (PKPD) model predicted international normalized ratio (INR) and warfarin concentration. Serum and fecal samples were collected to detect warfarin and vitamin K [VK1 and menaquinone-4 (MK4)] concentrations and gut microbiota diversity, respectively. In addition, the patient's medical records were reviewed for demographic characteristics, drug history, and CYP2C9, VKORC1, and CYP4F2 genotypes. RESULTS: The PKPD model predicted ideal values of 62.7% for S-warfarin, 70.4% for R-warfarin, and 76.4% for INR. The normal VK1 level was 1.34±1.12 nmol/ml (95% CI: 0.33-4.08 nmol/ml), and the normal MK4 level was 0.22±0.18 nmol/ml (95% CI: 0.07-0.63 nmol/ml). The MK4 to total vitamin K ratio was 16.5±9.8% (95% CI: 4.3-41.5%). The S-warfarin concentration of producing 50% of maximum anticoagulation and the half-life of prothrombin complex activity tended to increase with vitamin K. Further, Prevotella and Eubacterium of gut microbiota identified as the main bacteria associated with individual variability of warfarin. The results suggest that an increase in vitamin K concentration can decrease anticoagulation, and gut microbiota may influence warfarin anticoagulation through vitamin K2 synthesis. CONCLUSION: This study highlights the importance of considering vitamin K concentration and gut microbiota when prescribing warfarin. The findings may have significant implications for the personalized use of warfarin. Further research is needed to understand better the role of vitamin K and gut microbiota in warfarin anticoagulation.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Microbioma Gastrointestinal , Humanos , Varfarina/farmacologia , Vitamina K , Família 4 do Citocromo P450/genética , Vitamina K Epóxido Redutases/genética , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Genótipo
5.
Mol Neurobiol ; 59(5): 3124-3139, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35262869

RESUMO

Numerous studies have demonstrated the role of neuroinflammation in mediating acute pathophysiological events of early brain injury after subarachnoid hemorrhage (SAH). However, it is not clear how to target this inflammatory cascade after SAH. M1 activation of microglia is an important pathological mechanism driving neuroinflammation in SAH, which is considered aggressive, leading to cytotoxicity and robust inflammation related to the release of proinflammatory cytokines and chemokines after SAH. Thus, reducing the number of M1 microglia represents a potential target for therapies to improve outcomes after SAH. Previous studies have found that inducible nitric oxide synthase (iNOS/NO•) plays an essential role in promoting the survival of M1 microglia by blocking ferroptosis. Ferroptosis is a new type of iron-dependent cellular procedural death associated with pathological cell death related to mammalian degenerative diseases, cerebral hemorrhage, and traumatic brain injury. Here, we investigated the effect of L-NIL, an inhibitor of iNOS, on M1 microglia, neuroinflammation, neuronal cell death, brain edema, and neurological function in an experimental SAH model in vivo and in vitro. We found that L-NIL reduced the number of M1 microglia and alleviated neuroinflammation following SAH. Notably, treatment with L-NIL relieves brain edema and neuronal injury and improves outcomes of neurological function after SAH in rats. Mechanistically, we found that L-NIL inhibited the expression of iNOS and promoted ferroptosis of M1 microglia by increasing the expression of ferroptosis-related proteins and lipid peroxidation in an in vitro model of SAH, which was reversed by a ferroptosis inhibitor, liproxstatin-1. In addition, inhibiting iNOS had no significant effect on ferroptosis of neurons after oxyhemoglobin stimulation in vitro. Thus, our research demonstrated that inhibition of iNOS might represent a potential therapeutic strategy to improve outcomes after SAH by promoting ferroptosis of M1 microglia and reducing neuroinflammation.


Assuntos
Edema Encefálico , Lesões Encefálicas , Ferroptose , Hemorragia Subaracnóidea , Animais , Edema Encefálico/patologia , Lesões Encefálicas/metabolismo , Modelos Animais de Doenças , Mamíferos/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/patologia
6.
ACS Chem Neurosci ; 13(5): 664-675, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35143157

RESUMO

As a specific ferroptosis marker, transferrin receptor 1 (TfR1) expression is increased following traumatic brain injury (TBI), but the precise role of TfR1 in TBI-induced ferroptosis and neurodegeneration remains to be determined. To further identify more potent ferroptosis inhibitors and effective targets for treating TBI, our study aims at investigating the effects of TfR1 on ferroptosis in a mouse TBI model using ferristatin II (an iron uptake and TfR1 inhibitor). The effect of ferristatin II was first verified in the HT-22 cell line in vitro and showed antiferroptotic action when exposed to ferric citrate (FAC), which is in parallel with the results obtained from the positive controls, including deferoxamine (DFO) and liproxstatin-1 (Lip-1). In vivo, ferristatin II administration reduced the expression of TfR1 at 12 h after TBI, and immunofluorescence experiments further confirmed that this decreased TfR1-positive cells were neurons. Importantly, ferristatin II suppressed TBI-induced iron homeostatic imbalance by decreasing the content of Fe (III) and iron-positive deposits and reversed the expression of iron homeostasis-related proteins. Moreover, ferristatin II attenuated TBI-induced lipid peroxidation by reversing the expression of lipid peroxidative genes and proteins, as well as the increase in malondialdehyde (MDA) level following TBI. Finally, ferristatin II alleviated TBI-induced neuronal injury and neurodegeneration, as detected by staining with Nissl and Fluoro-Jade B, thereby exerting a neuroprotective effect. In summary, these data indicated that ferristatin II might be a potential strategy to restrain ferroptosis and develop novel therapeutic agents against TBI.


Assuntos
Lesões Encefálicas Traumáticas , Ferroptose , Animais , Compostos de Bifenilo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Ferro/metabolismo , Camundongos , Neuroproteção , Sulfonas
7.
Expert Opin Drug Metab Toxicol ; 17(10): 1165-1174, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34435921

RESUMO

INTRODUCTION: The composition of microorganisms is closely related to human health. Antibiotic use during pregnancy may have adverse effects on the neonatal gut microbiome and subsequently affect infant health development, leading to childhood atopy and allergic diseases, intestinal, metabolic and brain disorders, and infection. AREAS COVERED: This review includes the effect of maternal antibiotic use during pregnancy on potential diseases in animals and human offspring. EXPERT OPINION: Exposure to antibiotics during pregnancy alters offspring outcomes. Alterations in the microbiome may potentially lower the risk of a range of problems and may also be a novel therapeutic target in children later in life.


Assuntos
Antibacterianos/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Animais , Antibacterianos/efeitos adversos , Criança , Feminino , Humanos , Lactente , Recém-Nascido , Exposição Materna/efeitos adversos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/microbiologia
8.
RSC Adv ; 10(15): 8958-8966, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35496516

RESUMO

Melampomagnolide B (MMB) is a natural sesquiterpene lactone product structurally related to parthenolide (PTL). Although MMB has been widely used to treat various types of cancers, such as glioma, leukemia and colon cancer, the effective delivery of MMB to cancer cells remains a challenge. An amphiphilic drug-drug conjugate (ADDC) strategy has been proposed and developed as a promising drug self-delivery system for cancer therapy because of its simple preparation, carrier-free nature, and high therapeutic activity. Herein, we present a new ADDC, which is synthesized by linking the hydrophilic anticancer drug irinotecan (Ir) and the hydrophobic anticancer drug MMB through a carbonate bond. The obtained amphiphilic irinotecan-melampomagnolide B conjugate (Ir-C-MMB) can self-assemble in water into stable nanoparticles with an average diameter of around 122.1 nm. After cellular uptake, the carbonate bond between the hydrophilic drug and hydrophobic drug can be cleaved to release free Ir and MMB under acidic conditions, which exhibit a synergistic effect in tumor cells. MTT results reveal that the Ir-C-MMB nanoparticles can effectively inhibit proliferation of cancer cells. The apoptosis data indicate that the apoptosis rate of cells treated with Ir-C-MMB nanoparticles is about 50% within 24 h, which is much higher than that of free Ir or MMB. Our results suggest that this ADDC strategy could be used as a drug delivery platform for MMB and its derivatives, and that it offers effective synergistic therapeutic efficacy.

9.
Expert Opin Drug Metab Toxicol ; 16(6): 527-537, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32436768

RESUMO

OBJECTIVES: Rifampin (RIF), isoniazid (INH) and pyrazinamide (PZA) are essential components of the short-term first-line anti-tuberculosis (anti-TB) chemotherapy regimen and can cause hepatotoxicity. However, the mechanism of anti-TB drug-induced hepatotoxicity (ATDH) is currently unclear. We investigate the relevant contributions to liver injury and the pathway of the above-mentioned drugs administered alone or in combination. METHODS: UPLC-Q-TOF/MS-based metabolomics, bile acids (BAs) analysis and FXR/SHP detection were used to evaluate the toxicity of these drugs and clarify the underlying metabolism-related pathway. RESULTS: In C57BL/6 mice administered the corrected clinical doses, RIF, INH and PZA could induced hepatotoxicity; with less toxicity in the combination therapy than RIF. The pathological biochemistry, BAs concentration and metabolically regulated FXR/SHP gene expression analyzes in mice were consistent with the metabolomics results. FXR played a role in the hepatotoxicity of anti-tuberculosis drugs in the obeticholic acid treated and FXR-/- mice. Additionally, the purine and lipid metabolic pathways were involved in ATDH. CONCLUSION: ATDH was involved in bile acids and lipid and purine metabolism. The BAs metabolic pathway involvement in mice was validated in TB patients. The noninvasive metabolomics approach is more systemic than routine toxicity evaluation and can be used to assess compound toxicity and the underlying mechanism.


Assuntos
Antituberculosos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Receptores Citoplasmáticos e Nucleares/genética , Animais , Antituberculosos/administração & dosagem , Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Cromatografia Líquida de Alta Pressão , Quimioterapia Combinada , Isoniazida/administração & dosagem , Isoniazida/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Espectrometria de Massas , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Purinas/metabolismo , Pirazinamida/administração & dosagem , Pirazinamida/toxicidade , Rifampina/administração & dosagem , Rifampina/toxicidade
10.
Int J Pharm ; 511(1): 65-72, 2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27374197

RESUMO

In order to modulate the drug release profiles, the hierarchical mesoporous silica nanoparticles (HMSNs) are fabricated by a two-step synthetic process. The HMSNs exhibit uniform spherical morphology with nanoscaled size, well mono-dispersed size distribution, and smooth surface. Because of the hierarchical pore structures with different mesoporous sizes and morphologies (partial open and partial blocked pores), the HMSNs can release the loaded drug in a controlled manner. The hierarchical mesoporous structures directed drug release profiles suggest a feasible strategy to tailor drug release behaviors. Meanwhile, the HMSNs exhibit good biocompatibility. Therefore, the HMSNs having tailorable drug release capacity would be a potential candidate to improve their therapeutic efficiency for drug delivery systems.


Assuntos
Liberação Controlada de Fármacos , Nanopartículas/metabolismo , Dióxido de Silício/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/química , Porosidade , Dióxido de Silício/administração & dosagem , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA