Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 494, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641045

RESUMO

BACKGROUND: Soybean is one of the most important oil crops in the world. The domestication of wild soybean has resulted in significant changes in the seed oil content and seed size of cultivated soybeans. To better understand the molecular mechanisms of seed formation and oil content accumulation, WDD01514 (E1), ZYD00463 (E2), and two extreme progenies (E23 and E171) derived from RILs were used for weighted gene coexpression network analysis (WGCNA) combined with transcriptome analysis. RESULTS: In this study, both seed weight and oil content in E1 and E171 were significantly higher than those in E2 and E23, and 20 DAF and 30 DAF may be key stages of soybean seed oil content accumulation and weight increase. Pathways such as "Photosynthesis", "Carbon metabolism", and "Fatty acid metabolism", were involved in oil content accumulation and grain formation between wild and cultivated soybeans at 20 and 30 DAF according to RNA-seq analysis. A total of 121 oil content accumulation and 189 seed formation candidate genes were screened from differentially expressed genes. WGCNA identified six modules related to seed oil content and seed weight, and 76 candidate genes were screened from modules and network. Among them, 16 genes were used for qRT-PCR and tissue specific expression pattern analysis, and their expression-levels in 33-wild and 23-cultivated soybean varieties were subjected to correlation analysis; some key genes were verified as likely to be involved in oil content accumulation and grain formation. CONCLUSIONS: Overall, these results contribute to an understanding of seed lipid metabolism and seed size during seed development, and identify potential functional genes for improving soybean yield and seed oil quantity.


Assuntos
Fabaceae , Glycine max , Glycine max/genética , Sementes/genética , Perfilação da Expressão Gênica , Grão Comestível , Óleos de Plantas
2.
J Am Chem Soc ; 145(40): 22158-22167, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37779473

RESUMO

Li-SOCl2 batteries possess ultrahigh energy densities and superior safety features at a wide range of operating temperatures. However, the Li-SOCl2 battery system suffers from poor reversibility due to the sluggish kinetics of SOCl2 reduction during discharging and the oxidation of the insulating discharge products during charging. To achieve a high-power rechargeable Li-SOCl2 battery, herein we introduce the molecular catalyst I2 into the electrolyte to tailor the charging and discharging reaction pathways. The as-assembled rechargeable cell exhibits superior power density, sustaining an ultrahigh current density of 100 mA cm-2 during discharging and delivering a reversible capacity of 1 mAh cm-2 for 200 cycles at a current density of 2 mA cm-2 and 6 mAh cm-2 for 50 cycles at a current density of 5 mA cm-2. Our results reveal the molecular catalyst-mediated reaction mechanisms that fundamentally alter the rate-determining steps of discharging and charging in Li-SOCl2 batteries and highlight the viability of transforming a primary high-energy battery into a high-power rechargeable system, which has great potential to meet the ever-increasing demand of energy-storage systems.

3.
Angew Chem Int Ed Engl ; 61(29): e202204423, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35419905

RESUMO

Chalcogenides have been viewed as important conversion-type Mg2+ -storage cathodes to fulfill the high volumetric energy density promise of magnesium (Mg) batteries. However, the low initial Columbic efficiency and the rapid capacity degradation remain challenges for the chalcogenide cathodes, as the clear Mg2+ -storage mechanism has yet to be clarified. Herein, we illustrate that the charge storage mechanism of the Cu2-x Se cathode is a reversible displacement reaction along with a polyselenide (PSe) mediated solution process of anion-compensation. The unique anion redox improves charge storage, while the dissolution of PSe also leads to performance degradation. To address this issue, we introduce Mo6 S8 into the Cu2-x Se cathode to immobilize PSe, which significantly improves performance, especially the reversible capacity (from 140 mAh g-1 to 220 mAh g-1 ). This work provides inspiration for the modification of the Mg2+ -storage cathode, which is a milestone for high-performance Mg batteries.

4.
Plant Genome ; 16(1): e20281, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36345561

RESUMO

Increasing soybean [Glycine max (L.) Merr.] yield has become a worldwide scientific problem in the world. Many studies have shown that ubiquitination plays a key role in stress response and yield formation. In the UniProtKB database, 2,429 ubiquitin-related proteins were predicted in soybean, however, <20 were studied. One key way to address this lack of progress in increasing soybean yield will be a deeper understanding of the ubiquitin-proteasome system (UPS) in soybean. In this review, we summarized the current knowledge about soybean ubiquitin-related proteins and discussed the method of combining phenotype, mutant library, transgenic system, genomics, and proteomics approaches to facilitate the exploration of the soybean UPS. We also proposed the strategy of applying the UPS in soybean improvement based on related studies in model plants. Our review will be helpful for soybean scientists to learn current research progress of the soybean UPS and further lay a theoretical reference for the molecular improvement of soybean in future research by use of this knowledge.


Assuntos
Glycine max , Ubiquitina , Glycine max/genética , Ubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Genômica , Citoplasma
5.
Front Genet ; 13: 1055867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36437927

RESUMO

Soybean cyst nematode (SCN) is a serious damaging disease in soybean worldwide. Peking- and PI 88788-type sources of resistance are two most important germplasm used in breeding resistant soybean cultivars against this disease. However, until now, no comparisons of constitutive resistances to soybean cyst nematode between these two types of sources had been conducted, probably due to the influences of different backgrounds. In this study, we used pooled-sample analysis strategy to minimize the influence of different backgrounds and directly compared the molecular mechanisms underlying constitutive resistance to soybean cyst nematode between these two types of sources via transcriptomic and metabolomic profilings. Six resistant soybean accessions that have identical haplotypes as Peking at Rgh1 and Rhg4 loci were pooled to represent Peking-type sources. The PI88788-type and control pools were also constructed in a same way. Through transcriptomic and metabolomics anaylses, differentially expressed genes and metabolites were identified. The molecular pathways involved in the metabolism of toxic metabolites were predicted to play important roles in conferring soybean cyst nematode resistance to soybean. Functions of two resistant candidate genes were confirmed by hairy roots transformation methods in soybean. Our studies can be helpful for soybean scientists to further learn about the molecular mechanism of resistance to soybean cyst nematode in soybean.

6.
Chem Asian J ; 16(21): 3272-3280, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34448535

RESUMO

Batteries, as highly concerned energy conversion system, have a great development prospect in various fields, especially in the field of energy powered vehicles. Multivalent ion batteries are getting more attention due to their low cost, high abundance in earth crust, high capacity and safety compared with Lithium batteries. Despite above advantages, several problems still need to be solved before multivalent ion batteries achieve large-scale application, such as interfacial parasitic reaction, anode passivation, and dendrites. The replacement of liquid electrolytes with gel polymer electrolytes (GPEs) which pose high safety, high mechanical strength and simplified battery system, is an effective strategy to inhibit dendrite growth and improve electrochemical performance. This review mainly discusses the advantages and challenges of multivalent ion batteries including zinc, magnesium, calcium and aluminum batteries. Meanwhile, the major targets of this review are introducing the recent developments and making a summary of the future trends of GPEs in the multivalent ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA