Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Front Artif Intell ; 4: 612551, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34337389

RESUMO

Developing data-driven solutions that address real-world problems requires understanding of these problems' causes and how their interaction affects the outcome-often with only observational data. Causal Bayesian Networks (BN) have been proposed as a powerful method for discovering and representing the causal relationships from observational data as a Directed Acyclic Graph (DAG). BNs could be especially useful for research in global health in Lower and Middle Income Countries, where there is an increasing abundance of observational data that could be harnessed for policy making, program evaluation, and intervention design. However, BNs have not been widely adopted by global health professionals, and in real-world applications, confidence in the results of BNs generally remains inadequate. This is partially due to the inability to validate against some ground truth, as the true DAG is not available. This is especially problematic if a learned DAG conflicts with pre-existing domain doctrine. Here we conceptualize and demonstrate an idea of a "Causal Datasheet" that could approximate and document BN performance expectations for a given dataset, aiming to provide confidence and sample size requirements to practitioners. To generate results for such a Causal Datasheet, a tool was developed which can generate synthetic Bayesian networks and their associated synthetic datasets to mimic real-world datasets. The results given by well-known structure learning algorithms and a novel implementation of the OrderMCMC method using the Quotient Normalized Maximum Likelihood score were recorded. These results were used to populate the Causal Datasheet, and recommendations could be made dependent on whether expected performance met user-defined thresholds. We present our experience in the creation of Causal Datasheets to aid analysis decisions at different stages of the research process. First, one was deployed to help determine the appropriate sample size of a planned study of sexual and reproductive health in Madhya Pradesh, India. Second, a datasheet was created to estimate the performance of an existing maternal health survey we conducted in Uttar Pradesh, India. Third, we validated generated performance estimates and investigated current limitations on the well-known ALARM dataset. Our experience demonstrates the utility of the Causal Datasheet, which can help global health practitioners gain more confidence when applying BNs.

2.
Front Artif Intell ; 3: 33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33733151

RESUMO

The issue of fairness in machine learning models has recently attracted a lot of attention as ensuring it will ensure continued confidence of the general public in the deployment of machine learning systems. We focus on mitigating the harm incurred by a biased machine learning system that offers better outputs (e.g., loans, job interviews) for certain groups than for others. We show that bias in the output can naturally be controlled in probabilistic models by introducing a latent target output. This formulation has several advantages: first, it is a unified framework for several notions of group fairness such as Demographic Parity and Equality of Opportunity; second, it is expressed as a marginalization instead of a constrained problem; and third, it allows the encoding of our knowledge of what unbiased outputs should be. Practically, the second allows us to avoid unstable constrained optimization procedures and to reuse off-the-shelf toolboxes. The latter translates to the ability to control the level of fairness by directly varying fairness target rates. In contrast, existing approaches rely on intermediate, arguably unintuitive, control parameters such as covariance thresholds.

4.
IEEE Trans Pattern Anal Mach Intell ; 37(6): 1297-303, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26357350

RESUMO

Random forests works by averaging several predictions of de-correlated trees. We show a conceptually radical approach to generate a random forest: random sampling of many trees from a prior distribution, and subsequently performing a weighted ensemble of predictive probabilities. Our approach uses priors that allow sampling of decision trees even before looking at the data, and a power likelihood that explores the space spanned by combination of decision trees. While each tree performs Bayesian inference to compute its predictions, our aggregation procedure uses the power likelihood rather than the likelihood and is therefore strictly speaking not Bayesian. Nonetheless, we refer to it as a Bayesian random forest but with a built-in safety. The safeness comes as it has good predictive performance even if the underlying probabilistic model is wrong. We demonstrate empirically that our Safe-Bayesian random forest outperforms MCMC or SMC based Bayesian decision trees in term of speed and accuracy, and achieves competitive performance to entropy or Gini optimised random forest, yet is very simple to construct.

5.
IEEE Trans Pattern Anal Mach Intell ; 37(7): 1514-20, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26352456

RESUMO

We introduce a conceptually novel structured prediction model, GPstruct, which is kernelized, non-parametric and Bayesian, by design. We motivate the model with respect to existing approaches, among others, conditional random fields (CRFs), maximum margin Markov networks (M3N), and structured support vector machines (SVMstruct), which embody only a subset of its properties. We present an inference procedure based on Markov Chain Monte Carlo. The framework can be instantiated for a wide range of structured objects such as linear chains, trees, grids, and other general graphs. As a proof of concept, the model is benchmarked on several natural language processing tasks and a video gesture segmentation task involving a linear chain structure. We show prediction accuracies for GPstruct which are comparable to or exceeding those of CRFs and SVMstruct.

6.
IEEE Trans Pattern Anal Mach Intell ; 32(10): 1809-21, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20724758

RESUMO

Object matching is a fundamental operation in data analysis. It typically requires the definition of a similarity measure between the classes of objects to be matched. Instead, we develop an approach which is able to perform matching by requiring a similarity measure only within each of the classes. This is achieved by maximizing the dependency between matched pairs of observations by means of the Hilbert-Schmidt Independence Criterion. This problem can be cast as one of maximizing a quadratic assignment problem with special structure and we present a simple algorithm for finding a locally optimal solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA