Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 74(9): 2891-2911, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36723875

RESUMO

Climate change has intensified the infection of tomato plants by pathogens such as Pseudomonas syringae pv. tomato (Pst). Rootstocks may increase plant tolerance to leaf phytopathogens. The aim of this study was to evaluate the effects of the tolerant Poncho Negro (R) tomato rootstock on physiological defence and the role of hydrogen sulfide (H2S) in susceptible Limachino (L) tomato plant responses to Pst attack. Ungrafted (L), self-grafted (L/L), and grafted (L/R) plants were infected with Pst. Rootstock increased the concentration of antioxidant compounds including ascorbate in the scion. Tolerant rootstock induced an increase of H2S in the scion, which correlated with enhanced expression of the SlAPX2 gene. A high accumulation of salicylic acid was observed in Pst-inoculated grafted L/L and L/R plants, but this was higher in L/R plants. The increase of H2S during Pst infection was associated with a reduction of ethylene in L/R plants. Our study indicates that the Poncho Negro rootstock reduced the symptoms of bacterial speck disease in the Limachino tomato plants, conferring tolerance to Pst infection. This study provides new knowledge about the impact of rootstock in the defence of tomato plants against leaf pathogens that could be used in sustainable management of tomato cultivation.


Assuntos
Pseudomonas syringae , Solanum lycopersicum , Solanum lycopersicum/genética , Plantas , Folhas de Planta/fisiologia , Doenças das Plantas/microbiologia
2.
Physiol Plant ; 172(2): 577-586, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33090466

RESUMO

Water availability is one of the main factors affecting crop production and the occurrence of drought periods is expected to increase in the context of ongoing climate change. We investigated the impact of water stress on two pseudocereal species, common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (Fagopyrum tataricum). Plants were grown under greenhouse conditions under two water regimes: control (40-50% soil humidity) and water stress (<20% soil humidity). Although closely related, both species differed by their resistance to water stress. The vegetative growth was affected in F. esculentum but not in F. tataricum as water stress decreased leaf production, leaf fresh, and dry weight, stomatal conductance, transpiration rate, and photosynthesis rate in the former but not in the latter. However, chlorophyll fluorescence parameters were not affected by water stress, whatever the species, and the chlorophyll content increased in water-stressed plants in both species. Oxidative stress was observed in both species in response to water stress, and antioxidant content was increased in F. tataricum. The reproductive phase was affected by water stress in both species: the number of inflorescences and pollen production decreased, mainly in F. esculentum. Seed set was maintained in F. tataricum while this parameter was not investigated in F. esculentum due to its self-incompatibility. Our results suggested that F. tataricum was more resistant to water stress than F. esculentum and that F. esculentum had characteristics of drought avoidance, while F. tataricum exhibited traits of drought tolerance.


Assuntos
Fagopyrum , Antioxidantes , Secas , Folhas de Planta , Sementes
3.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008776

RESUMO

Currently, seed priming is reported as an efficient and low-cost approach to increase crop yield, which could not only promote seed germination and improve plant growth state but also increase abiotic stress tolerance. Salinity represents one of the most significant abiotic stresses that alters multiple processes in plants. The accumulation of polyamines (PAs) in response to salt stress is one of the most remarkable plant metabolic responses. This paper examined the effect of osmopriming on endogenous polyamine metabolism at the germination and early seedling development of Brassica napus in relation to salinity tolerance. Free, conjugated and bound polyamines were analyzed, and changes in their accumulation were discussed with literature data. The most remarkable differences between the corresponding osmoprimed and unprimed seeds were visible in the free (spermine) and conjugated (putrescine, spermidine) fractions. The arginine decarboxylase pathway seems to be responsible for the accumulation of PAs in primed seeds. The obvious impact of seed priming on tyramine accumulation was also demonstrated. Moreover, the level of ethylene increased considerably in seedlings issued from primed seeds exposed to salt stress. It can be concluded that the polyamines are involved in creating the beneficial effect of osmopriming on germination and early growth of Brassica napus seedlings under saline conditions through moderate changes in their biosynthesis and accumulation.


Assuntos
Vias Biossintéticas , Brassica napus/crescimento & desenvolvimento , Etilenos/biossíntese , Germinação , Osmose , Poliaminas/metabolismo , Estresse Salino , Sementes/crescimento & desenvolvimento
4.
J Sci Food Agric ; 101(15): 6211-6219, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33913529

RESUMO

BACKGROUND: Amaranthus cruentus is a promising leafy vegetable with high nutritional value and is able to cope with salt stress but the impact of sodium chloride (NaCl) on its main properties have not been studied in detail. Plants from two contrasting cultivars (Rouge: salt-tolerant and Locale: salt-sensitive) were exposed to NaCl (0, 30, 60 and 90 mmol L-1 ) in nutrient solution for 2 weeks. Plant growth, mineral content, oxidative status and antioxidant concentration, salicylic acid concentration, protein content and amino acid profile were analyzed in the harvested leaves. RESULTS: Low dose (30 mmol L-1 NaCl) increased plant growth while Na+ accumulated to higher extent in salt-sensitive Locale than in salt-tolerant Rouge. A total of 30 mmol L-1 NaCl increased magnesium (Mg), phosphorus (P) and iron (Fe) content, as well as total antioxidant activity, ascorbate, phenolics, α-tocopherol and carotenoids content to higher extent in cultivar (cv.) Rouge than in cv. Locale. Low (30 mmol L-1 ) and moderate salinities (60 mmol L-1 ) increased γ-tocopherol and total protein in cv. Locale. They also increased lysine, valine, methionine and proline concentration as well as chemical score of protein in this cultivar. The highest NaCl (90 mmol L-1 ) dose had a detrimental impact on both cultivars. CONCLUSIONS: It is concluded that A. cruentus is a promising plant species for saline agriculture since moderate doses of salt improve both quantitative and qualitative parameters in cultivar dependent manner. © 2021 Society of Chemical Industry.


Assuntos
Amaranthus/metabolismo , Aminoácidos/química , Antioxidantes/análise , Folhas de Planta/química , Cloreto de Sódio/análise , Amaranthus/química , Amaranthus/crescimento & desenvolvimento , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Tolerância ao Sal , Cloreto de Sódio/metabolismo
5.
Int J Mol Sci ; 20(3)2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696013

RESUMO

Seed priming is a pre-sowing method successfully used to improve seed germination. Since water plays a crucial role in germination, the aim of this study was to investigate the relationship between better germination performances of osmoprimed Brassica napus seeds and seed water status during germination. To achieve this goal, a combination of different kinds of approaches was used, including nuclear magnetic resonance (NMR) spectroscopy, TEM, and SEM as well as semi-quantitative PCR (semi-qPCR). The results of this study showed that osmopriming enhanced the kinetics of water uptake and the total amount of absorbed water during both the early imbibition stage and in the later phases of seed germination. The spin⁻spin relaxation time (T2) measurement suggests that osmopriming causes faster water penetration into the seed and more efficient tissue hydration. Moreover, factors potentially affecting water relations in germinating primed seeds were also identified. It was shown that osmopriming (i) changes the microstructural features of the seed coat, e.g., leads to the formation of microcracks, (ii) alters the internal structure of the seed by the induction of additional void spaces in the seed, (iii) increases cotyledons cells vacuolization, and (iv) modifies the expression pattern of aquaporin genes.


Assuntos
Brassica napus/crescimento & desenvolvimento , Germinação , Sementes/crescimento & desenvolvimento , Água/fisiologia , Aquaporinas/genética , Aquaporinas/metabolismo , Brassica napus/ultraestrutura , Cotilédone/citologia , Cotilédone/ultraestrutura , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Cinética , Sementes/ultraestrutura , Vacúolos/metabolismo
6.
Glob Chang Biol ; 23(1): 68-76, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27234488

RESUMO

Several bee species are experiencing significant population declines. As bees exclusively rely on pollen for development and survival, such declines could be partly related to changes in their host plant abundance and quality. Here, we investigate whether generalist bumblebee species, with stable population trends over the past years, adapted their diets in response to changes in the distribution and chemical quality of their pollen resources. We selected five common species of bumblebee in NW Europe for which we had a precise description of their pollen diet through two time periods ('prior to 1950' and '2004-2005'). For each species, we assessed whether the shift in their pollen diet was related with the changes in the suitable area of their pollen resources. Concurrently, we evaluated whether the chemical composition of pollen resources changed over time and experimentally tested the impact of new major pollen species on the development of B. terrestris microcolonies. Only one species (i.e. B. lapidarius) significantly included more pollen from resources whose suitable area expanded. This opportunist pattern could partly explain the expansion of B. lapidarius in Europe. Regarding the temporal variation in the chemical composition of the pollen diet, total and essential amino acid contents did not differ significantly between the two time periods while we found significant differences among plant species. This result is driven by the great diversity of resources used by bumblebee species in both periods. Our bioassay revealed that the shift to new major pollen resources allowed microcolonies to develop, bringing new evidence on the opportunist feature of bumblebee in their diets. Overall, this study shows that the response to pollen resource drift varies among closely related pollinators, and a species-rich plant community ensures generalist species to select a nutrient-rich pollen diet.


Assuntos
Abelhas , Comportamento Alimentar , Pólen , Animais , Dieta , Europa (Continente) , Plantas
7.
Molecules ; 22(8)2017 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-28825629

RESUMO

The use of sprouts in the human diet is becoming more and more widespread because they are tasty and high in bioactive compounds and antioxidants, with related health benefits. In this work, we sprouted rapeseed under increasing salinity to investigate the effect on free and bound total phenolics (TP), non-flavonoids (NF), tannins (TAN), phenolic acids (PAs), and antioxidant activity. Seeds were incubated at 0, 25, 50, 100, 200 mM NaCl until early or late sprout stage, i.e., before or after cotyledon expansion, respectively. Sprouting and increasing salinity slightly decreased the bound fractions of TP, NF, TAN, PAs, while it increased markedly the free ones and their antioxidant activity. Further increases were observed in late sprouts. Moderate salinity (25-50 mM NaCl) caused the highest relative increase in phenolic concentration while it slightly affected sprout growth. On the contrary, at higher NaCl concentrations, sprouts grew slowly (100 mM NaCl) or even died before reaching the late sprout stage (200 mM). Overall, moderate salinity was the best compromise to increase phenolic content of rapeseed sprouts. The technique may be evaluated for transfer to other species as a cheap and feasible way to increase the nutritional value of sprouts.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Brassica/química , Brassica/fisiologia , Germinação , Fenóis/química , Fenóis/farmacologia , Salinidade , Flavonoides/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Humanos , Compostos Fitoquímicos/química , Plântula/química , Plântula/crescimento & desenvolvimento , Taninos/química
8.
Physiol Plant ; 158(2): 152-67, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27105808

RESUMO

This study aimed to determine the effects of exogenous application of salicylic acid (SA) on the toxic effects of salt in relation to ethylene and polyamine synthesis, and to correlate these traits with the expression of genes involved in ethylene and polyamine metabolism in two tomato species differing in their sensitivity to salt stress, Solanum lycopersicum cv Ailsa Craig and its wild salt-resistant relative Solanum chilense. In S. chilense, treatment with 125 mM NaCl improved plant growth, increased production of ethylene, endogenous salicylic acid and spermine. The production was related to a modification of expression of genes involved in ethylene and polyamine metabolism. In contrast, salinity decreased plant growth in S. lycopersicum without affecting endogenous ethylene, salicylic or polyamine concentrations. Exogenous application of salicylic acid at 0.01 mM enhanced shoot growth in both species and affected ethylene and polyamine production in S. chilense. Concomitant application of NaCl and salicylic acid improved osmotic adjustment, thus suggesting that salt and SA may act in synergy on osmolyte synthesis. However, the beneficial impact of exogenous application of salicylic acid was mitigated by salt stress since NaCl impaired endogenous SA accumulation in the shoot and salicylic acid did not improve plant growth in salt-treated plants. Our results thus revealed that both species respond differently to salinity and that salicylic acid, ethylene and polyamine metabolisms are involved in salt resistance in S. chilense.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Poliaminas/metabolismo , Ácido Salicílico/metabolismo , Cloreto de Sódio/farmacologia , Solanum lycopersicum/fisiologia , Solanum/fisiologia , Etilenos/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Osmose , Salinidade , Plantas Tolerantes a Sal , Solanum/efeitos dos fármacos , Estresse Fisiológico
9.
J Exp Bot ; 65(9): 2243-56, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24659487

RESUMO

Four B-class MADS box genes specify petal and stamen organ identities in tomato. Several homeotic mutants affected in petal and stamen development were described in this model species, although the causal mutations have not been identified for most of them. In this study we characterized a strong stamenless mutant in the tomato Primabel cultivar (sl-Pr), which exhibited homeotic conversion of petals into sepals and stamens into carpels and we compared it with the stamenless mutant in the LA0269 accession (sl-LA0269). Genetic complementation analysis proved that both sl mutants were allelic. Sequencing revealed point mutations in the coding sequence of the Tomato APETALA3 (TAP3) gene of the sl-Pr genome, which lead to a truncated protein, whereas a chromosomal rearrangement in the TAP3 promoter was detected in the sl-LA0269 allele. Moreover, the floral phenotype of TAP3 antisense plants exhibited identical homeotic changes to sl mutants. These results demonstrate that SL is the tomato AP3 orthologue and that the mutant phenotype correlated to the SL silencing level. Expression analyses showed that the sl-Pr mutation does not affect the expression of other tomato B-class genes, although SL may repress the A-class gene MACROCALYX. A partial reversion of the sl phenotype by gibberellins, gene expression analysis, and hormone quantification in sl flowers revealed a role of phytohormones in flower development downstream of the SL gene. Together, our results indicated that petal and stamen identity in tomato depends on gene-hormone interactions, as mediated by the SL gene.


Assuntos
Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Inativação Gênica , Solanum lycopersicum/química , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Transcrição Gênica
10.
PeerJ ; 12: e17136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590707

RESUMO

The germinations of three common buckwheat (Fagopyrum esculentum) varieties and two Tartary buckwheat (Fagopyrum tataricum) varieties seeds are known to be affected by high temperature. However, little is known about the physiological mechanism affecting germination and the effect of melatonin (MT) on buckwheat seed germination under high temperature. This work studied the effects of exogenous MT on buckwheat seed germination under high temperature. MT was sprayed. The parameters, including growth, and physiological factors, were examined. The results showed that exogenous MT significantly increased the germination rate (GR), germination potential (GP), radicle length (RL), and fresh weight (FW) of these buckwheat seeds under high-temperature stress and enhanced the content of osmotic adjustment substances and enzyme activity. Comprehensive analysis revealed that under high-temperature stress during germination, antioxidant enzymes play a predominant role, while osmotic adjustment substances work synergistically to reduce the extent of damage to the membrane structure, serving as the primary key indicators for studying high-temperature resistance. Consequently, our results showed that MT had a positive protective effect on buckwheat seeds exposed to high temperature stress, providing a theoretical basis for improving the ability to adapt to high temperature environments.


Assuntos
Fagopyrum , Melatonina , Germinação , Melatonina/farmacologia , Fagopyrum/química , Temperatura , Sementes/química
12.
Genome Biol ; 25(1): 61, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414075

RESUMO

BACKGROUND: Tartary buckwheat, Fagopyrum tataricum, is a pseudocereal crop with worldwide distribution and high nutritional value. However, the origin and domestication history of this crop remain to be elucidated. RESULTS: Here, by analyzing the population genomics of 567 accessions collected worldwide and reviewing historical documents, we find that Tartary buckwheat originated in the Himalayan region and then spread southwest possibly along with the migration of the Yi people, a minority in Southwestern China that has a long history of planting Tartary buckwheat. Along with the expansion of the Mongol Empire, Tartary buckwheat dispersed to Europe and ultimately to the rest of the world. The different natural growth environments resulted in adaptation, especially significant differences in salt tolerance between northern and southern Chinese Tartary buckwheat populations. By scanning for selective sweeps and using a genome-wide association study, we identify genes responsible for Tartary buckwheat domestication and differentiation, which we then experimentally validate. Comparative genomics and QTL analysis further shed light on the genetic foundation of the easily dehulled trait in a particular variety that was artificially selected by the Wa people, a minority group in Southwestern China known for cultivating Tartary buckwheat specifically for steaming as a staple food to prevent lysine deficiency. CONCLUSIONS: This study provides both comprehensive insights into the origin and domestication of, and a foundation for molecular breeding for, Tartary buckwheat.


Assuntos
Fagopyrum , Domesticação , Fagopyrum/genética , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genômica , Filogenia
13.
Planta ; 238(3): 441-57, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23728368

RESUMO

Kosteletzkya virginica is a wetland halophyte that is a good candidate for rehabilitation of degraded salt marshes and production of oil as biodiesel. Salt marshes are frequently contaminated by heavy metals. The distribution of Zn in vegetative and reproductive organs of adult plants, and the NaCl influence on this distribution remain unknown and were thus explored in the present study. Plants were cultivated in a nutrient film technique system, from seedling stage until seed maturation in a control, Zn (100 µM), NaCl (50 mM) or Zn + NaCl medium. Photosynthesis, ion nutrition, malondialdehyde and non-protein thiol concentrations were quantified. Zinc distribution in reproductive organs was estimated by a laser ablation-inductively coupled plasma-mass spectrometry procedure (LA-ICP-MS). Adult plants accumulated up to 2 mg g(-1) DW Zn in the shoots. Zinc reduced plant growth, inhibited photosynthesis and reduced seed yield. Zinc accumulation in the seeds was only two times higher in Zn-treated plants than in controls. Exogenous NaCl neutralized the damaging action of Zn and modified the Zn distribution through a preferential accumulation of toxic ions in older leaves. Zinc was present in seed testa, endosperm and, to a lower extent, in embryo. Additional NaCl induced a chalazal retention of Zn during seed maturation and reduced final Zn seed content. It is concluded that NaCl 50 mM had a positive impact on the response of K. virginica to Zn toxicity and acts through a modification in Zn distribution rather than a decrease in Zn absorption.


Assuntos
Brotos de Planta/metabolismo , Plantas Tolerantes a Sal/metabolismo , Zinco/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Brotos de Planta/efeitos dos fármacos , Salinidade , Plantas Tolerantes a Sal/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo , Sementes/efeitos dos fármacos , Sementes/metabolismo , Cloreto de Sódio/farmacologia
14.
Physiol Plant ; 147(3): 352-68, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22697433

RESUMO

Salt marshes constitute major sinks for heavy metal accumulation but the precise impact of salinity on heavy metal toxicity for halophyte plant species remains largely unknown. Young seedlings of Kosteletzkya virginica were exposed during 3 weeks in nutrient solution to Cd 5 µM in the presence or absence of 50 mM NaCl. Cadmium (Cd) reduced growth and shoot water content and had major detrimental effect on maximum quantum efficiency (F(v) /F(m) ), effective quantum yield of photosystem II (Y(II)) and electron transport rates (ETRs). Cd induced an oxidative stress in relation to an increase in O(2) (•-) and H(2) O(2) concentration and lead to a decrease in endogenous glutathione (GSH) and α-tocopherol in the leaves. Cd not only increased leaf zeatin and zeatin riboside concentration but also increased the senescing compounds 1-aminocyclopropane-1-carboxylic acid (ACC) and abscisic acid (ABA). Salinity reduced Cd accumulation already after 1 week of stress but was unable to restore shoot growth and thus did not induce any dilution effect. Salinity delayed the Cd-induced leaf senescence: NaCl reduced the deleterious impact of Cd on photosynthesis apparatus through an improvement of F(v) /F(m) , Y(II) and ETR. Salt reduced oxidative stress in Cd-treated plants through an increase in GSH, α-tocopherol and ascorbic acid synthesis and an increase in glutathione reductase (EC 1.6.4.2) activity. Additional salt reduced ACC and ABA accumulation in Cd+NaCl-treated leaves comparing to Cd alone. It is concluded that salinity affords efficient protection against Cd to the halophyte species K. virginica, in relation to an improved management of oxidative stress and hormonal status.


Assuntos
Antioxidantes/metabolismo , Cádmio/farmacologia , Malvaceae/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Aminoácidos Cíclicos/metabolismo , Clorofila/metabolismo , Transporte de Elétrons , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Malvaceae/efeitos dos fármacos , Malvaceae/enzimologia , Malvaceae/crescimento & desenvolvimento , Estresse Oxidativo , Fotossíntese , Complexo de Proteína do Fotossistema II , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/enzimologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Salinidade , Plantas Tolerantes a Sal , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Cloreto de Sódio/farmacologia , Áreas Alagadas , alfa-Tocoferol/metabolismo
15.
Plants (Basel) ; 12(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37765474

RESUMO

Amaranths (Amaranthus L.) are multi-use crop species renowned for their nutritional quality and their tolerance to biotic and abiotic stresses. Since the soil salinity of croplands is a growing problem worldwide, we tested the salinity tolerance of six grain and two leaf cultivars of Amaranthus cruentus L. The plants were grown for 53 days under hydroponic conditions at 0, 50 and 100 mM NaCl. We investigated the growth rate, photosynthetic activity, mineral content, pigments and biochemical compounds involved in oxidative stress. Although 100 mM NaCl always decreased biomass production, we highlighted Don Leon and K91 as tolerant cultivars under moderate salt stress (50 mM NaCl). Under salinity, sodium accumulated more in the shoots than in the roots, particularly in the stems. Sodium accumulation in the plants decreased the net photosynthetic rate, transpiration rate and stomatal conductance but increased water use efficiency, and it decreased chlorophyll, betalain and polyphenol content in the leaves. It also decreased the foliar content of calcium, magnesium and potassium but not the iron and zinc content. The physiological parameters responded differently to sodium accumulation depending on the cultivar, suggesting a different relative importance of ionic and osmotic phases of salt stress among cultivars. Our results allowed us to identify the morpho-physiological traits of the cultivars with different salt tolerance levels.

16.
PLoS One ; 18(11): e0290752, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37967065

RESUMO

We analyzed the expression of genes coding for Na+ transporters (OsHKT1.5, OsHKT1.1, OsSOS1, OsSOS2, OsNHX1, OsNHX2), Cl- transporter (OsNRT1, OsCLC, OsCCC1) and gene coding for the transcription factor DREB (OsDREB2) involved in response to desiccation in two cultivars of O. glaberrrima differing in salt-resistance (salt-tolerant cultivar (TOG5307) and salt-sensitive (TOG 5949)) exposed to NaCl, PEG or both agents present simultaneously. Seedlings were grown in iso-osmotic nutrient solution (Ψs = -0.47±0.02 MPa) containing PEG 6,000 12.9% (water stress), NaCl 75 mM (salt stress) and PEG 6.4% + NaCl 37.5 mM (MIX-treatment) during 1 and 7 days. Plants were analyzed for gene expression, mineral nutrients, and photosynthetic-related parameters. Na+ and Cl- accumulations in salt-treated plants were lower in roots and shoots of TOG5307 comparatively to TOG5949 while water content decreased in TOG5307. TOG5307 exhibited tolerance to water stress and maintained higher net photosynthesis and water use efficiency than TOG5949 in response to all treatments, but was less efficient for osmotic adjustment. Dehydration tolerance of TOG5307 involves a higher OsDREB2 expression. TOG5307 also exhibited a higher OsSOS1, OsSOS2, OsNHX1 and OsNHX2 expression than TOG5949 in response to salinity. OsHKT1.5 was slightly induced in the shoot. OsHKT1.1 was recorded in the shoots but remained undetectable in the roots. Chloride and sodium accumulations were strongly reduced in the shoots when PEG was present. Salinity resistance in Oryza glaberrima implies tolerance to dehydration as well as complementary strategies of Na+ exclusion through the SOS system and Na+ tolerance through vacuolar sequestration.


Assuntos
Oryza , Oryza/metabolismo , Desidratação/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fotossíntese , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Salinidade , Estresse Fisiológico/genética
17.
Front Plant Sci ; 14: 1326689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143584

RESUMO

Tomato (Solanum lycopersicum L.) domestication and later introduction into Europe resulted in a genetic bottleneck that reduced genetic variation. Crosses with other wild tomato species from the Lycopersicon clade can be used to increase genetic diversity and improve important agronomic traits such as stress tolerance. However, many species in the Lycopersicon clade have intraspecific and interspecific incompatibility, such as gametophytic self-incompatibility and unilateral incompatibility. In this review, we provide an overview of the known incompatibility barriers in Lycopersicon. We begin by addressing the general mechanisms self-incompatibility, as well as more specific mechanisms in the Rosaceae, Papaveraceae, and Solanaceae. Incompatibility in the Lycopersicon clade is discussed, including loss of self-incompatibility, species exhibiting only self-incompatibility and species presenting both self-compatibility and self-incompatibility. We summarize unilateral incompatibility in general and specifically in Lycopersicon, with details on the 'self-compatible x self-incompatible' rule, implications of self-incompatibility in unilateral incompatibility and self-incompatibility-independent pathways of unilateral incompatibility. Finally, we discuss advances in the understanding of compatibility barriers and their implications for tomato breeding.

18.
Mol Plant ; 16(9): 1427-1444, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37649255

RESUMO

Common buckwheat (Fagopyrum esculentum) is an ancient crop with a world-wide distribution. Due to its excellent nutritional quality and high economic and ecological value, common buckwheat is becoming increasingly important throughout the world. The availability of a high-quality reference genome sequence and population genomic data will accelerate the breeding of common buckwheat, but the high heterozygosity due to the outcrossing nature has greatly hindered the genome assembly. Here we report the assembly of a chromosome-scale high-quality reference genome of F. esculentum var. homotropicum, a homozygous self-pollinating variant of common buckwheat. Comparative genomics revealed that two cultivated buckwheat species, common buckwheat (F. esculentum) and Tartary buckwheat (F. tataricum), underwent metabolomic divergence and ecotype differentiation. The expansion of several gene families in common buckwheat, including FhFAR genes, is associated with its wider distribution than Tartary buckwheat. Copy number variation of genes involved in the metabolism of flavonoids is associated with the difference of rutin content between common and Tartary buckwheat. Furthermore, we present a comprehensive atlas of genomic variation based on whole-genome resequencing of 572 accessions of common buckwheat. Population and evolutionary genomics reveal genetic variation associated with environmental adaptability and floral development between Chinese and non-Chinese cultivated groups. Genome-wide association analyses of multi-year agronomic traits with the content of flavonoids revealed that Fh05G014970 is a potential major regulator of flowering period, a key agronomic trait controlling the yield of outcrossing crops, and that Fh06G015130 is a crucial gene underlying flavor-associated flavonoids. Intriguingly, we found that the gene translocation and sequence variation of FhS-ELF3 contribute to the homomorphic self-compatibility of common buckwheat. Collectively, our results elucidate the genetic basis of speciation, ecological adaptation, fertility, and unique flavor of common buckwheat, and provide new resources for future genomics-assisted breeding of this economically important crop.


Assuntos
Produtos Biológicos , Fagopyrum , Fagopyrum/genética , Metagenômica , Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Fertilidade
19.
Plant Cell Environ ; 35(10): 1837-59, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22506799

RESUMO

Ferrous iron toxicity is a mineral disorder frequently occurring under waterlogged soils where rice is cultivated. To decipher the main metabolic pathways involved in rice response to iron excess, seedlings have been exposed to 125 mg L(-1) FeSO(4) for 3 weeks. A combined transcriptomic, biochemical and physiological study has been performed after short-term (3 d) or long-term (3 weeks) exposure to iron in order to elucidate the strategy of stress adaptation with time. Our results showed that short- and long-term exposure involved a very different response in gene expression regarding both the number and function. A larger number of genes were up- or down-regulated after 3 d than after 3 weeks of iron treatment; these changes also occurred in shoot even though no significant difference in iron concentration was recorded. Those modifications in gene expression after 3 d affected not only genes involved in hormonal signalling but also genes involved in C-compound and carbohydrate metabolism, oxygen and electron transfer, oxidative stress, and iron homeostasis and transport. Modification in some gene expression can be followed by modification in corresponding metabolic products and physiological properties, or differed in time for some others, underlying the importance of an integrated study.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ferro/toxicidade , Oryza/efeitos dos fármacos , Oryza/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Metabolismo dos Carboidratos , Carboidratos , Clorofila/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Ferro/análise , Malondialdeído/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/genética , Oryza/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Plântula/genética , Plântula/metabolismo , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Água/metabolismo
20.
Plants (Basel) ; 11(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35684290

RESUMO

The use of orphan crops could mitigate the effects of climate change and improve the quality of food security. We compared the effects of drought, high temperature, and their combination in 12 varieties of Tartary buckwheat (Fagopyrum tataricum). Plants were grown at 21/19 °C or 28/26 °C under well-watered and water-stressed conditions. Plants were more discriminated according to environmental conditions than variety, with the exception of Islek that was smaller and produced fewer leaves, inflorescences, and seeds than the other varieties. The combination of high temperature and water stress had a stronger negative impact than each stress applied separately. The temperature increase stimulated leaf and flower production while water stress decreased plant height. Leaf area decreased with both temperature and water stress. High temperature hastened the seed initiation but negatively affected seed development such that almost all seeds aborted at 28 °C. At 21 °C, water stress significantly decreased the seed production per plant. At the physiological level, water stress increased the chlorophyll content and temperature increased the transpiration rate under well-watered conditions. High temperature also increased the polyphenol and flavonoid concentrations, mainly in the inflorescences. Altogether, our results showed that water stress and temperature increase in particular negatively affected seed production in F. tataricum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA