Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Ann Neurol ; 62(4): 390-405, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17886299

RESUMO

OBJECTIVE: Dominant mutations in the three collagen VI genes cause Bethlem myopathy, a disorder characterized by proximal muscle weakness and commonly contractures of the fingers, wrists, and ankles. Although more than 20 different dominant mutations have been identified in Bethlem myopathy patients, the biosynthetic consequences of only a subset of these have been studied, and in many cases, the pathogenic mechanisms remain unknown. METHODS: We have screened fourteen Bethlem myopathy patients for collagen VI mutations and performed detailed analyses of collagen VI biosynthesis and intracellular and extracellular assembly. RESULTS: Collagen VI abnormalities were identified in eight patients. One patient produced around half the normal amount of alpha1(VI) messenger RNA and reduced amounts of collagen VI protein. Two patients had a previously reported mutation causing skipping of COL6A1 exon 14, and three patients had novel mutations leading to in-frame deletions toward the N-terminal end of the triple-helical domain. These mutations have different and complex effects on collagen VI intracellular and extracellular assembly. Two patients had single amino acid substitutions in the A-domains of COL6A2 and COL6A3. Collagen VI intracellular and extracellular assembly was normal in one of these patients. INTERPRETATION: The key to dissecting the pathogenic mechanisms of collagen VI mutations lies in detailed analysis of collagen VI biosynthesis and assembly. The majority of mutations result in secretion and deposition of structurally abnormal collagen VI. However, one A-domain mutation had no detectable effect on assembly, suggesting that it acts by compromising collagen VI interactions in the extracellular matrix of muscle.


Assuntos
Doenças do Colágeno/genética , Colágeno Tipo VI/genética , Genes Dominantes/genética , Doenças Musculares/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação
2.
Neuromuscul Disord ; 22(3): 225-30, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22113158

RESUMO

Severe forms of myotubular myopathy (MTM) and congenital myotonic dystrophy type 1 (CDM), both present as floppy infants with hypotonia, respiratory failure and bulbar insufficiency. Muscle biopsy is often performed as part of the diagnostic process, but these two disorders share very similar histopathological features. It is well documented that CDM muscle has nuclear foci that contain muscleblind-like 1 (MBNL1) protein. In muscle biopsies from eight neonates showing central nuclei, MBNL1 immunolocalisation identified discrete, intensely stained foci in three cases that were subsequently confirmed as CDM by DNA analysis. In the five remaining non-CDM patients and two controls, MBNL1 staining was heterogeneous in nuclei, not as foci. MBNL1 staining patterns in CDM were easily distinguishable from MTM. We suggest that in cases of hypotonia with suspected CDM or MTM, when biopsy has been taken, sections should additionally be stained for MBNL1 to provide a rapid indication of a CDM diagnosis.


Assuntos
Imuno-Histoquímica/métodos , Miopatias Congênitas Estruturais/diagnóstico , Distrofia Miotônica/diagnóstico , Proteínas de Ligação a RNA/metabolismo , Adolescente , Biópsia/métodos , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Feminino , Feto , Humanos , Recém-Nascido , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Miotônica/metabolismo , Proteínas de Ligação a RNA/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA