RESUMO
Pairwise comparison models are an important type of latent attribute measurement model with broad applications in the social and behavioural sciences. Current pairwise comparison models are typically unidimensional. The existing multidimensional pairwise comparison models tend to be difficult to interpret and they are unable to identify groups of raters that share the same rater-specific parameters. To fill this gap, we propose a new multidimensional pairwise comparison model with enhanced interpretability which explicitly models how object attributes on different dimensions are differentially perceived by raters. Moreover, we add a Dirichlet process prior on rater-specific parameters which allows us to flexibly cluster raters into groups with similar perceptual orientations. We conduct simulation studies to show that the new model is able to recover the true latent variable values from the observed binary choice data. We use the new model to analyse original survey data regarding the perceived truthfulness of statements on COVID-19 collected in the summer of 2020. By leveraging the strengths of the new model, we find that the partisanship of the speaker and the partisanship of the respondent account for the majority of the variation in perceived truthfulness, with statements made by co-partisans being viewed as more truthful.
RESUMO
Does encouragement help address gender imbalances in technical fields? We present the results of one of the first and largest randomized controlled trials on the topic. Using an applied statistics conference in the social sciences as our context, we randomly assigned half of a pool of 3,945 graduate students to receive two personalized emails encouraging them to apply (n = 1,976) and the other half to receive nothing (n = 1,969). We find a robust, positive effect associated with this simple intervention and suggestive evidence that women responded more strongly than men. However, we find that women's conference acceptance rates are higher within the control group than in the treated group. This is not the case for men. The reason appears to be that female applicants in the treated group solicited supporting letters at lower rates. Our findings therefore suggest that "low dose" interventions may promote diversity in STEM fields but may also have the potential to expose underlying disparities when used alone or in a non-targeted way.
Assuntos
Congressos como Assunto , Competência Profissional , Estudantes/psicologia , Tecnologia , Adulto , Feminino , Humanos , Masculino , Avaliação de Programas e Projetos de Saúde , Fatores SexuaisRESUMO
BACKGROUND: Many automated radiosynthesizers for producing positron emission tomography (PET) probes provide a means for the operator to create custom synthesis programs. The programming interfaces are typically designed with the engineer rather than the radiochemist in mind, requiring lengthy programs to be created from sequences of low-level, non-intuitive hardware operations. In some cases, the user is even responsible for adding steps to update the graphical representation of the system. In light of these unnecessarily complex approaches, we have created software to perform radiochemistry on the ELIXYS radiosynthesizer with the goal of being intuitive and easy to use. METHODS: Radiochemists were consulted, and a wide range of radiosyntheses were analyzed to determine a comprehensive set of basic chemistry unit operations. Based around these operations, we created a software control system with a client-server architecture. In an attempt to maximize flexibility, the client software was designed to run on a variety of portable multi-touch devices. The software was used to create programs for the synthesis of several 18F-labeled probes on the ELIXYS radiosynthesizer, with [18F]FDG detailed here. To gauge the user-friendliness of the software, program lengths were compared to those from other systems. A small sample group with no prior radiosynthesizer experience was tasked with creating and running a simple protocol. RESULTS: The software was successfully used to synthesize several 18F-labeled PET probes, including [18F]FDG, with synthesis times and yields comparable to literature reports. The resulting programs were significantly shorter and easier to debug than programs from other systems. The sample group of naive users created and ran a simple protocol within a couple of hours, revealing a very short learning curve. The client-server architecture provided reliability, enabling continuity of the synthesis run even if the computer running the client software failed. The architecture enabled a single user to control the hardware while others observed the run in progress or created programs for other probes. CONCLUSIONS: We developed a novel unit operation-based software interface to control automated radiosynthesizers that reduced the program length and complexity and also exhibited a short learning curve. The client-server architecture provided robustness and flexibility.
RESUMO
BACKGROUND: Automated radiosynthesizers are vital for routine production of positron-emission tomography tracers to minimize radiation exposure to operators and to ensure reproducible synthesis yields. The recent trend in the synthesizer industry towards the use of disposable kits aims to simplify setup and operation for the user, but often introduces several limitations related to temperature and chemical compatibility, thus requiring reoptimization of protocols developed on non-cassette-based systems. Radiochemists would benefit from a single hybrid system that provides tremendous flexibility for development and optimization of reaction conditions while also providing a pathway to simple, cassette-based production of diverse tracers. METHODS: We have designed, built, and tested an automated three-reactor radiosynthesizer (ELIXYS) to provide a flexible radiosynthesis platform suitable for both tracer development and routine production. The synthesizer is capable of performing high-pressure and high-temperature reactions by eliminating permanent tubing and valve connections to the reaction vessel. Each of the three movable reactors can seal against different locations on disposable cassettes to carry out different functions such as sealed reactions, evaporations, and reagent addition. A reagent and gas handling robot moves sealed reagent vials from storage locations in the cassette to addition positions and also dynamically provides vacuum and inert gas to ports on the cassette. The software integrates these automated features into chemistry unit operations (e.g., React, Evaporate, Add) to intuitively create synthesis protocols. 2-Deoxy-2-[18F]fluoro-5-methyl-ß-l-arabinofuranosyluracil (l-[18F]FMAU) and 2-deoxy-2-[18F]fluoro-ß-d-arabinofuranosylcytosine (d-[18F]FAC) were synthesized to validate the system. RESULTS: l-[18F]FMAU and d-[18F]FAC were successfully synthesized in 165 and 170 min, respectively, with decay-corrected radiochemical yields of 46% ± 1% (n = 6) and 31% ± 5% (n = 6), respectively. The yield, repeatability, and synthesis time are comparable to, or better than, other reports. d-[18F]FAC produced by ELIXYS and another manually operated apparatus exhibited similar biodistribution in wild-type mice. CONCLUSION: The ELIXYS automated radiosynthesizer is capable of performing radiosyntheses requiring demanding conditions: up to three reaction vessels, high temperatures, high pressures, and sensitive reagents. Such flexibility facilitates tracer development and the ability to synthesize multiple tracers on the same system without customization or replumbing. The disposable cassette approach simplifies the transition from development to production.