Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(21): 210501, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31809160

RESUMO

We demonstrate diabatic two-qubit gates with Pauli error rates down to 4.3(2)×10^{-3} in as fast as 18 ns using frequency-tunable superconducting qubits. This is achieved by synchronizing the entangling parameters with minima in the leakage channel. The synchronization shows a landscape in gate parameter space that agrees with model predictions and facilitates robust tune-up. We test both iswap-like and cphase gates with cross-entropy benchmarking. The presented approach can be extended to multibody operations as well.

2.
Phys Rev Lett ; 118(5): 057702, 2017 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-28211704

RESUMO

By analyzing the dissipative dynamics of a tunable gap flux qubit, we extract both sides of its two-sided environmental flux noise spectral density over a range of frequencies around 2k_{B}T/h≈1 GHz, allowing for the observation of a classical-quantum crossover. Below the crossover point, the symmetric noise component follows a 1/f power law that matches the magnitude of the 1/f noise near 1 Hz. The antisymmetric component displays a 1/T dependence below 100 mK, providing dynamical evidence for a paramagnetic environment. Extrapolating the two-sided spectrum predicts the linewidth and reorganization energy of incoherent resonant tunneling between flux qubit wells.

3.
Phys Rev Lett ; 113(22): 220502, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25494061

RESUMO

We introduce a superconducting qubit architecture that combines high-coherence qubits and tunable qubit-qubit coupling. With the ability to set the coupling to zero, we demonstrate that this architecture is protected from the frequency crowding problems that arise from fixed coupling. More importantly, the coupling can be tuned dynamically with nanosecond resolution, making this architecture a versatile platform with applications ranging from quantum logic gates to quantum simulation. We illustrate the advantages of dynamical coupling by implementing a novel adiabatic controlled-z gate, with a speed approaching that of single-qubit gates. Integrating coherence and scalable control, the introduced qubit architecture provides a promising path towards large-scale quantum computation and simulation.

4.
Phys Rev Lett ; 110(17): 173603, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679727

RESUMO

We demonstrate quantum control and entanglement generation using a Landau-Zener beam splitter formed by coupling two transmon qubits to a superconducting cavity. Single passage through the cavity-mediated qubit-qubit avoided crossing provides a direct test of the Landau-Zener transition formula. Consecutive sweeps result in Landau-Zener-Stückelberg interference patterns, with a visibility that can be sensitively tuned by adjusting the level velocity through both the nonadiabatic and adiabatic regimes. Two-qubit state tomography indicates that a Bell state can be generated via a single passage, with a fidelity of 78% limited by qubit relaxation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA