Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 577(7791): 509-513, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747679

RESUMO

The electrocatalytic reduction of carbon dioxide, powered by renewable electricity, to produce valuable fuels and feedstocks provides a sustainable and carbon-neutral approach to the storage of energy produced by intermittent renewable sources1. However, the highly selective generation of economically desirable products such as ethylene from the carbon dioxide reduction reaction (CO2RR) remains a challenge2. Tuning the stabilities of intermediates to favour a desired reaction pathway can improve selectivity3-5, and this has recently been explored for the reaction on copper by controlling morphology6, grain boundaries7, facets8, oxidation state9 and dopants10. Unfortunately, the Faradaic efficiency for ethylene is still low in neutral media (60 per cent at a partial current density of 7 milliamperes per square centimetre in the best catalyst reported so far9), resulting in a low energy efficiency. Here we present a molecular tuning strategy-the functionalization of the surface of electrocatalysts with organic molecules-that stabilizes intermediates for more selective CO2RR to ethylene. Using electrochemical, operando/in situ spectroscopic and computational studies, we investigate the influence of a library of molecules, derived by electro-dimerization of arylpyridiniums11, adsorbed on copper. We find that the adhered molecules improve the stabilization of an 'atop-bound' CO intermediate (that is, an intermediate bound to a single copper atom), thereby favouring further reduction to ethylene. As a result of this strategy, we report the CO2RR to ethylene with a Faradaic efficiency of 72 per cent at a partial current density of 230 milliamperes per square centimetre in a liquid-electrolyte flow cell in a neutral medium. We report stable ethylene electrosynthesis for 190 hours in a system based on a membrane-electrode assembly that provides a full-cell energy efficiency of 20 per cent. We anticipate that this may be generalized to enable molecular strategies to complement heterogeneous catalysts by stabilizing intermediates through local molecular tuning.

2.
Nature ; 570(7759): 96-101, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31118515

RESUMO

The stability of solution-processed semiconductors remains an important area for improvement on their path to wider deployment. Inorganic caesium lead halide perovskites have a bandgap well suited to tandem solar cells1 but suffer from an undesired phase transition near room temperature2. Colloidal quantum dots (CQDs) are structurally robust materials prized for their size-tunable bandgap3; however, they also require further advances in stability because they are prone to aggregation and surface oxidization at high temperatures as a consequence of incomplete surface passivation4,5. Here we report 'lattice-anchored' hybrid materials that combine caesium lead halide perovskites with lead chalcogenide CQDs, in which lattice matching between the two materials contributes to a stability exceeding that of the constituents. We find that CQDs keep the perovskite in its desired cubic phase, suppressing the transition to the undesired lattice-mismatched phases. The stability of the CQD-anchored perovskite in air is enhanced by an order of magnitude compared with pristine perovskite, and the material remains stable for more than six months at ambient conditions (25 degrees Celsius and about 30 per cent humidity) and more than five hours at 200 degrees Celsius. The perovskite prevents oxidation of the CQD surfaces and reduces the agglomeration of the nanoparticles at 100 degrees Celsius by a factor of five compared with CQD controls. The matrix-protected CQDs show a photoluminescence quantum efficiency of 30 per cent for a CQD solid emitting at infrared wavelengths. The lattice-anchored CQD:perovskite solid exhibits a doubling in charge carrier mobility as a result of a reduced energy barrier for carrier hopping compared with the pure CQD solid. These benefits have potential uses in solution-processed optoelectronic devices.

3.
Nature ; 544(7648): 75-79, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28321128

RESUMO

Colloidal quantum dots (CQDs) feature a low degeneracy of electronic states at the band edges compared with the corresponding bulk material, as well as a narrow emission linewidth. Unfortunately for potential laser applications, this degeneracy is incompletely lifted in the valence band, spreading the hole population among several states at room temperature. This leads to increased optical gain thresholds, demanding high photoexcitation levels to achieve population inversion (more electrons in excited states than in ground states-the condition for optical gain). This, in turn, increases Auger recombination losses, limiting the gain lifetime to sub-nanoseconds and preventing steady laser action. State degeneracy also broadens the photoluminescence linewidth at the single-particle level. Here we demonstrate a way to decrease the band-edge degeneracy and single-dot photoluminescence linewidth in CQDs by means of uniform biaxial strain. We have developed a synthetic strategy that we term facet-selective epitaxy: we first switch off, and then switch on, shell growth on the (0001) facet of wurtzite CdSe cores, producing asymmetric compressive shells that create built-in biaxial strain, while still maintaining excellent surface passivation (preventing defect formation, which otherwise would cause non-radiative recombination losses). Our synthesis spreads the excitonic fine structure uniformly and sufficiently broadly that it prevents valence-band-edge states from being thermally depopulated. We thereby reduce the optical gain threshold and demonstrate continuous-wave lasing from CQD solids, expanding the library of solution-processed materials that may be capable of continuous-wave lasing. The individual CQDs exhibit an ultra-narrow single-dot linewidth, and we successfully propagate this into the ensemble of CQDs.

4.
Nat Mater ; 19(4): 412-418, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32042078

RESUMO

The composition of perovskite has been optimized combinatorially such that it often contains six components (AxByC1-x-yPbXzY3-z) in state-of-art perovskite solar cells. Questions remain regarding the precise role of each component, and the lack of a mechanistic explanation limits the practical exploration of the large and growing chemical space. Here, aided by transient photoluminescence microscopy, we find that, in perovskite single crystals, carrier diffusivity is in fact independent of composition. In polycrystalline thin films, the different compositions play a crucial role in carrier diffusion. We report that methylammonium (MA)-based films show a high carrier diffusivity of 0.047 cm2 s-1, while MA-free mixed caesium-formamidinium (CsFA) films exhibit an order of magnitude lower diffusivity. Elemental composition studies show that CsFA grains display a graded composition. This curtails electron diffusion in these films, as seen in both vertical carrier transport and surface potential studies. Incorporation of MA leads to a uniform grain core-to-edge composition, giving rise to a diffusivity of 0.034 cm2 s-1 in CsMAFA films. A model that invokes competing crystallization processes allows us to account for this finding, and suggests further strategies to achieve homogeneous crystallization for the benefit of perovskite optoelectronics.

5.
J Am Chem Soc ; 142(11): 5126-5134, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32150404

RESUMO

Metal halide perovskites show promise for light-emitting diodes (LEDs) owing to their facile manufacture and excellent optoelectronic performance, including high color purity and spectral stability, especially in the green region. However, for blue perovskite LEDs, the emission spectrum line width is broadened to over 25 nm by the coexistence of multiple reduced-dimensional perovskite domains, and the spectral stability is poor, with an undesirable shift (over 7 nm) toward longer wavelengths under operating conditions, degradation that occurs due to phase separation when mixed halides are employed. Here we demonstrate chloride insertion-immobilization, a strategy that enables blue perovskite LEDs, the first to exhibit narrowband (line width of 18 nm) and spectrally stable (no wavelength shift) performance. We prepare bromide-based perovskites and then employ organic chlorides for dynamic treatment, inserting and in situ immobilizing chlorides to blue-shift and stabilize the emission. We achieve sky-blue LEDs with a record luminance over 5100 cd/m2 at 489 nm, and an operating half-life of 51 min at 1500 cd/m2. By device structure optimization, we further realize an improved EQE of 5.2% at 479 nm and an operating half-life of 90 min at 100 cd/m2.

6.
J Am Chem Soc ; 141(34): 13459-13467, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31366193

RESUMO

Two-dimensional (2D) and quasi-2D perovskite materials have enabled advances in device performance and stability relevant to a number of optoelectronic applications. However, the alignment among the bands of these variably quantum confined materials remains a controversial topic: there exist multiple experimental reports supporting type-I, and also others supporting type-II, band alignment among the reduced-dimensional grains. Here we report a combined computational and experimental study showing that variable ligand concentration on grain surfaces modulates the surface charge density among neighboring quantum wells. Density functional theory calculations and ultraviolet photoelectron spectroscopy reveal that the effective work function of a given quantum well can be varied by modulating the density of ligands at the interface. These induce type-II interfaces in otherwise type-I aligned materials. By treating 2D perovskite films, we find that the effective work function can indeed be shifted down by up to 1 eV. We corroborate the model via a suite of pump-probe transient absorption experiments: these manifest charge transfer consistent with a modulation in band alignment of at least 200 meV among neighboring grains. The findings shed light on perovskite 2D band alignment and explain contrasting behavior of quasi-2D materials in light-emitting diodes (LEDs) and photovoltaics (PV) in the literature, where materials can exhibit either type-I or type-II interfaces depending on the ligand concentration at neighboring surfaces.

7.
J Am Chem Soc ; 141(36): 14180-14189, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31422664

RESUMO

The deployment of perovskite solar cells will rely on further progress in the operating and ambient stability of active layers and interfaces within these materials. Low-dimensional perovskites, also known as perovskite quantum wells (PQWs), utilize organic ligands to protect the perovskite lattice from degradation and offer to improve device stability; combining 2D and 3D perovskites in heterostructures has been shown to take advantage of the high efficiency of the majority 3D active layers and combine it with the improved stability of a thin 2D top layer. Prior PQWs have relied on relatively weak interwell van der Waals bonding between hydrophobic organic moieties of the ligands. Here we instead use the ligand 4-vinylbenzylammonium to form well-ordered PQWs atop a 3D perovskite layer. The ligand's vinyl group is activated using UV light which photochemically forms new covalent bonds among PQWs. UV-cross-linked 2D/3D devices show improved operational stability as well as improved long-term dark stability in air: they retain 90% of their initial efficiency after 2300 h of dark aging compared to a retention of 20% of performance in the case of 3D films. The UV-cross-linked PQWs and 2D/3D interfaces reduce device hysteresis and improve the open-circuit voltages to values up to 1.20 V, resulting in more efficient devices (PCE of up to 20.4%). This work highlights the exploitation of the chemical reactivity of PQW ligands to tailor the molecular properties of PQW interfaces for improved stability and performance in 2D/3D perovskite photovoltaics.

8.
J Am Chem Soc ; 141(20): 8296-8305, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31055917

RESUMO

Metal halide perovskites exhibit outstanding optoelectronic properties: superior charge carrier mobilities, low densities of deep trap states, high photoluminescence quantum yield, and wide color tunability. The introduction of dopant ions provides pathways to manipulate the electronic and chemical features of perovskites. In metal halide perovskites ABX3, where A is a monovalent cation (e.g., methylammonium (MA+), Cs+), B is the divalent metal ion(s) (e.g., Pb2+, Sn2+), and X is the halide group (e.g., Cl-, Br-, or I-), the isovalent exchange of A- and X-site ions has been widely accomplished; in contrast, strategies to exchange B-site cations are underexamined. The activation energies for vacancy-mediated diffusion of B-site cations are much higher than those for A- and X-sites, leading to slow doping processes and low doping ratios. Herein we demonstrate a new method that exchanges B-site cations in perovskites. We design a series of metal carboxylate solutions that anchor on the perovskite surface, allowing fast and efficient doping of B-sites with both homovalent and heterovalent cations (e.g., Sn2+, Zn2+, Bi3+) at room temperature. The doping process in the reduced-dimensional perovskites is complete within 1 min, whereas a similar reaction only leads to the surface attachment of dopant ions in three-dimensional structures. We offer a model based on ammonium extraction and surface ion-pair substitution.

9.
Nat Mater ; 17(10): 900-907, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202112

RESUMO

Reduced-dimensional metal halide perovskites (RDPs) have attracted significant attention in recent years due to their promising light harvesting and emissive properties. We sought to increase the systematic understanding of how RDPs are formed. Here we report that layered intermediate complexes formed with the solvent provide a scaffold that facilitates the nucleation and growth of RDPs during annealing, as observed via in situ X-ray scattering. Transient absorption spectroscopy of RDP single crystals and films enables the identification of the distribution of quantum well thicknesses. These insights allow us to develop a kinetic model of RDP formation that accounts for the experimentally observed size distribution of wells. RDPs exhibit a thickness distribution (with sizes that extend above n = 5) determined largely by the stoichiometric proportion between the intercalating cation and solvent complexes. The results indicate a means to control the distribution, composition and orientation of RDPs via the selection of the intercalating cation, the solvent and the deposition technique.

10.
Nano Lett ; 18(7): 4417-4423, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29912564

RESUMO

Colloidal quantum dots (CQDs) are promising solution-processed infrared-absorbing materials for optoelectronics. In these applications, it is crucial to replace the electrically insulating ligands used in synthesis to form strongly coupled quantum dot solids. Recently, solution-phase ligand-exchange strategies have been reported that minimize the density of defects and the polydispersity of CQDs; however, we find herein that the new ligands exhibit insufficient chemical reactivity to remove original oleic acid ligands completely. This leads to low CQD packing and correspondingly low electronic performance. Here we report an acid-assisted solution-phase ligand-exchange strategy that, by enabling efficient removal of the original ligands, enables the synthesis of densified CQD arrays. Our use of hydroiodic acid simultaneously facilitates high CQD packing via proton donation and CQD passivation through iodine. We demonstrate highly packed CQD films with a 2.5 times increased carrier mobility compared with prior exchanges. The resulting devices achieve the highest infrared photon-to-electron conversion efficiencies (>50%) reported in the spectral range of 0.8 to 1.1 eV.

11.
J Am Chem Soc ; 140(8): 2890-2896, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29397693

RESUMO

Metal halide perovskites have achieved photovoltaic efficiencies exceeding 22%, but their widespread use is hindered by their instability in the presence of water and oxygen. To bolster stability, researchers have developed low-dimensional perovskites wherein bulky organic ligands terminate the perovskite lattice, forming quantum wells (QWs) that are protected by the organic layers. In thin films, the width of these QWs exhibits a distribution that results in a spread of bandgaps in the material arising due to varying degrees of quantum confinement across the population. Means to achieve refined control over this QW width distribution, and to examine and understand its influence on photovoltaic performance, are therefore of intense interest. Here we show that moving to the ligand allylammonium enables a narrower distribution of QW widths, creating a flattened energy landscape that leads to ×1.4 and ×1.9 longer diffusion lengths for electrons and holes, respectively. We attribute this to reduced ultrafast shallow hole trapping that originates from the most strongly confined QWs. We observe an increased PCE of 14.4% for allylammonium-based perovskite QW photovoltaics, compared to 11-12% PCEs obtained for analogous devices using phenethylammonium and butylammonium ligands. We then optimize the devices using mixed-cation strategies, achieving 16.5% PCE for allylammonium devices. The devices retain 90% of their initial PCEs after >650 h when stored under ambient atmospheric conditions.

12.
J Am Chem Soc ; 139(19): 6693-6699, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28438016

RESUMO

The low toxicity and a near-ideal choice of bandgap make tin perovskite an attractive alternative to lead perovskite in low cost solar cells. However, the development of Sn perovskite solar cells has been impeded by their extremely poor stability when exposed to oxygen. We report low-dimensional Sn perovskites that exhibit markedly enhanced air stability in comparison with their 3D counterparts. The reduced degradation under air exposure is attributed to the improved thermodynamic stability after dimensional reduction, the encapsulating organic ligands, and the compact perovskite film preventing oxygen ingress. We then explore these highly oriented low-dimensional Sn perovskite films in solar cells. The perpendicular growth of the perovskite domains between electrodes allows efficient charge carrier transport, leading to power conversion efficiencies of 5.94% without the requirement of further device structure engineering. We tracked the performance of unencapsulated devices over 100 h and found no appreciable decay in efficiency. These findings raise the prospects of pure Sn perovskites for solar cells application.

13.
Opt Lett ; 41(13): 3110-3, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27367114

RESUMO

We theoretically analyze the dependence of second-harmonic generation efficiency on the group index in periodic optical waveguides with loss. We investigate different possible scenarios of using slow light to enhance the efficiency of this process and show that in some cases there exists a maximally achievable efficiency reached for finite values of the group index at the point of phase-matching. Furthermore, we identify situations for which slow light, surprisingly, does not enhance the second-harmonic generation efficiency. Our results are corroborated by rigorous nonlinear simulations of second-harmonic generation in periodic nanobeam waveguides with loss.

14.
Adv Mater ; 34(4): e2108150, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34761462

RESUMO

Light-emitting diodes (LEDs) in a tandem configuration offer a strategy to realize high-performance, multicolor devices. Until now, though, the efficiency of tandem colloidal quantum dot LEDs (QLEDs) has been limited due to unpassivated interfaces and solvent damage originating from the materials processing requirements of interconnecting layers (ICLs). Here an ICL is reported consisting of a semiconductor-metal-dielectric stack that provides facile fabrication, materials stability, and good optoelectronic coupling. It is investigated experimentally how the ICL enables charge balance, suppresses current leakage, and prevents solvent damage to the underlying layers. As a result record efficiencies are reported for double-junction tandem QLEDs, whose emission wavelengths cover from blue to red light; i.e., external quantum efficiencies (EQEs) of 40% (average 37+/-2%) for red, 49% (average 45+/-2%) for yellow, 50% (average 46+/-2%) for green, and 24% (average 21+/-2%) for blue are achieved.

15.
Nat Commun ; 12(1): 3472, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108463

RESUMO

Many of the best-performing perovskite photovoltaic devices make use of 2D/3D interfaces, which improve efficiency and stability - but it remains unclear how the conversion of 3D-to-2D perovskite occurs and how these interfaces are assembled. Here, we use in situ Grazing-Incidence Wide-Angle X-Ray Scattering to resolve 2D/3D interface formation during spin-coating. We observe progressive dimensional reduction from 3D to n = 3 → 2 → 1 when we expose (MAPbBr3)0.05(FAPbI3)0.95 perovskites to vinylbenzylammonium ligand cations. Density functional theory simulations suggest ligands incorporate sequentially into the 3D lattice, driven by phenyl ring stacking, progressively bisecting the 3D perovskite into lower-dimensional fragments to form stable interfaces. Slowing the 2D/3D transformation with higher concentrations of antisolvent yields thinner 2D layers formed conformally onto 3D grains, improving carrier extraction and device efficiency (20% 3D-only, 22% 2D/3D). Controlling this progressive dimensional reduction has potential to further improve the performance of 2D/3D perovskite photovoltaics.

16.
J Phys Chem Lett ; 11(10): 4213-4220, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32374611

RESUMO

The use of LiF as a thin interlayer between the electron transport layer and cathode has played a pivotal role in remarkable advances in perovskite LEDs (PeLEDs); however, the mechanism behind the effect of LiF remains to be fully understood. Here, we report a combined experimental and computational study, from which we ascribe the benefits of a LiF interlayer to the migration of dissociated Li into the cathode and dissociated F into the anode. Electronic device simulations reveal that the former improves electron injection by lowering the Schottky barrier height, while the latter reduces the barrier width. These reduce turn-on voltage and improve current density and charge balance in LEDs. We fabricate PeLEDs with and without the LiF interlayer and link these materials and electronic phenomena to the device light-current-voltage characteristics. X-ray photoelectron spectroscopy obtained in sputter profiling of PeLEDs corroborates the dissociation of LiF.

17.
J Phys Chem Lett ; 11(9): 3458-3465, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32293898

RESUMO

Metal halide perovskites are being increasingly explored for use in light-emitting diodes (LEDs), with achievements in efficiency and brightness charted across the spectrum. One path to further boosting the fraction of useful photons generated by injected electrical charges will be to tailor the emission patterns of devices. Here we investigate directional emission from layered metal halide perovskites. We quantify the proportion of in-plane versus out-of-plane transition dipole components for a suite of layered perovskites. We find that certain perovskite single crystals have highly anisotropic emissions and up to 90% of their transition dipole in-plane. For thin films, emission anisotropy increases as the nominal layer thickness decreases and is generally greater with butylammonium cations than with phenethylammonium cations. Numerical simulations reveal that anisotropic emission from layered perovskites in thin-film LEDs may lead to external quantum efficiencies of 45%, an absolute gain of 13% over equivalent films with isotropic emitters.

18.
Nat Nanotechnol ; 15(8): 668-674, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32632321

RESUMO

Colloidal quantum dot (QD) solids are emerging semiconductors that have been actively explored in fundamental studies of charge transport1 and for applications in optoelectronics2. Forming high-quality QD solids-necessary for device fabrication-requires substitution of the long organic ligands used for synthesis with short ligands that provide increased QD coupling and improved charge transport3. However, in perovskite QDs, the polar solvents used to carry out the ligand exchange decompose the highly ionic perovskites4. Here we report perovskite QD resurfacing to achieve a bipolar shell consisting of an inner anion shell, and an outer shell comprised of cations and polar solvent molecules. The outer shell is electrostatically adsorbed to the negatively charged inner shell. This approach produces strongly confined perovskite QD solids that feature improved carrier mobility (≥0.01 cm2 V-1 s-1) and reduced trap density relative to previously reported low-dimensional perovskites. Blue-emitting QD films exhibit photoluminescence quantum yields exceeding 90%. By exploiting the improved mobility, we have been able to fabricate CsPbBr3 QD-based efficient blue and green light-emitting diodes. Blue devices with reduced trap density have an external quantum efficiency of 12.3%; the green devices achieve an external quantum efficiency of 22%.

19.
Nat Commun ; 11(1): 170, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924790

RESUMO

Reduced-dimensional perovskites are attractive light-emitting materials due to their efficient luminescence, color purity, tunable bandgap, and structural diversity. A major limitation in perovskite light-emitting diodes is their limited operational stability. Here we demonstrate that rapid photodegradation arises from edge-initiated photooxidation, wherein oxidative attack is powered by photogenerated and electrically-injected carriers that diffuse to the nanoplatelet edges and produce superoxide. We report an edge-stabilization strategy wherein phosphine oxides passivate unsaturated lead sites during perovskite crystallization. With this approach, we synthesize reduced-dimensional perovskites that exhibit 97 ± 3% photoluminescence quantum yields and stabilities that exceed 300 h upon continuous illumination in an air ambient. We achieve green-emitting devices with a peak external quantum efficiency (EQE) of 14% at 1000 cd m-2; their maximum luminance is 4.5 × 104 cd m-2 (corresponding to an EQE of 5%); and, at 4000 cd m-2, they achieve an operational half-lifetime of 3.5 h.

20.
J Phys Chem Lett ; 10(3): 419-426, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30630317

RESUMO

Solution-processed perovskite quantum wells have been used to fabricate increasingly efficient and stable optoelectronic devices. Little is known about the dynamics of photogenerated excitons in perovskite quantum wells within the first few hundred femtoseconds-a crucial time scale on which energy and charge transfer processes may compete. Here we use ultrafast transient absorption and two-dimensional electronic spectroscopy to clarify the movement of excitons and charges in reduced-dimensional perovskite solids. We report excitonic funneling from strongly to weakly confined perovskite quantum wells within 150 fs, facilitated by strong spectral overlap and orientational alignment among neighboring wells. This energy transfer happens on time scales orders of magnitude faster than charge transfer, which we find to occur instead over 10s to 100s of picoseconds. Simulations of both Förster-type interwell exciton transfer and free carrier charge transfer are in agreement with these experimental findings, with theoretical exciton transfer calculated to occur in 100s of femtoseconds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA