Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Mater ; 22(1): 36-41, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36396962

RESUMO

The honeycomb magnet α-RuCl3 has attracted considerable interest because it is proximate to the Kitaev Hamiltonian whose excitations are Majoranas and vortices. The thermal Hall conductivity κxy of Majorana fermions is predicted to be half-quantized. Half-quantization of κxy/T (T, temperature) was recently reported, but this observation has proven difficult to reproduce. Here, we report detailed measurements of κxy on α-RuCl3 with the magnetic field B ∥ a (zigzag axis). In our experiment, κxy/T is observed to be strongly temperature dependent between 0.5 and 10 K. We show that its temperature profile matches the distinct form expected for topological bosonic modes in a Chern-insulator-like model. Our analysis yields magnon band energies in agreement with spectroscopic experiments. At high B, the spin excitations evolve into magnon-like modes with a Chern number of ~1. The bosonic character is incompatible with half-quantization of κxy/T.

2.
Mol Ther ; 26(1): 208-218, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29107477

RESUMO

Because muscle contains osteoprogenitor cells and has a propensity to form bone, we have explored its utility in healing large osseous defects. Healing is achieved by the insertion of muscle fragments transduced with adenovirus encoding BMP-2 (Ad.BMP-2). However, it is not known whether the genetically modified muscle contributes osteoprogenitor cells to healing defects or merely serves as a local source of BMP-2. This question is part of the larger debate on the fate of progenitor cells introduced into sites of tissue damage to promote regeneration. To address this issue, we harvested fragments of muscle from rats constitutively expressing GFP, transduced them with Ad.BMP-2, and implanted them into femoral defects in wild-type rats under various conditions. GFP+ cells persisted within defects for the entire 8 weeks of the experiments. In the absence of bone formation, these cells presented as fibroblasts. When bone was formed, GFP+ cells were present as osteoblasts and osteocytes and also among the lining cells of new blood vessels. The genetically modified muscle thus contributed progenitor cells as well as BMP-2 to the healing defect, a property of great significance in light of the extensive damage to soft tissue and consequent loss of endogenous progenitors in problematic fractures.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Osteoblastos/metabolismo , Osteogênese , Absorciometria de Fóton , Animais , Biópsia , Regeneração Óssea , Expressão Gênica , Genes Reporter , Imuno-Histoquímica , Masculino , Músculo Esquelético/metabolismo , RNA Mensageiro/genética , Ratos , Cicatrização , Microtomografia por Raio-X
3.
Nanotechnology ; 29(20): 20LT01, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29512512

RESUMO

Two-dimensional materials such as graphene and transition metal dichalcogenides (TMDs) are ideal candidates to create ultra-thin electronics suitable for flexible substrates. Although optoelectronic devices based on TMDs have demonstrated remarkable performance, scalability is still a significant issue. Most devices are created using techniques that are not suitable for mass production, such as mechanical exfoliation of monolayer flakes and patterning by electron-beam lithography. Here we show that large-area MoS2 grown by chemical vapor deposition and patterned by photolithography yields highly sensitive photodetectors, with record shot-noise-limited detectivities of 8.7 × 1014 Jones in ambient condition and even higher when sealed with a protective layer. These detectivity values are higher than the highest values reported for photodetectors based on exfoliated MoS2. We study MoS2 devices with gold electrodes and graphene electrodes. The devices with graphene electrodes have a tunable band alignment and are especially attractive for scalable ultra-thin flexible optoelectronics.

4.
Nat Commun ; 14(1): 6583, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852969

RESUMO

Weyl semimetals exhibit exotic magnetotransport phenomena such as the chiral anomaly and surface-to-bulk quantum oscillations (Weyl orbits) due to chiral bulk states and topologically protected surface states. Here we report a unique transport property in crystals of the ferromagnetic nodal-line Weyl semimetal Co2MnGa that have been polished to micron thicknesses using a focused ion beam. These thin crystals exhibit a large planar resistance anisotropy (10 × ) with axes that rotate by 90 degrees between opposite faces of the crystal. We use symmetry arguments and electrostatic simulations to show that the observed anisotropy resembles that of an isotropic conductor with surface states that are impeded from hybridization with bulk states. The origin of these states awaits further experiments that can correlate the surface bands with the observed 90° twist.

5.
Cells ; 11(11)2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35681447

RESUMO

The use of multiphasic scaffolds to treat injured tendon-to-bone entheses has shown promising results in vitro. Here, we used two versions of a biphasic silk fibroin scaffold to treat an enthesis defect created in a rat patellar model in vivo. One version presented a mixed transition between the bony and the tendon end of the construct (S-MT) while this transition was abrupt in the second version (S-AT). At 12 weeks after surgery, the S-MT scaffold promoted better healing of the injured enthesis, with minimal undesired ossification of the insertion area. The expression of tenogenic and chondrogenic markers was sustained for longer in the S-MT-treated group and the tangent modulus of the S-MT-treated samples was similar to the native tissue at 12 weeks while that of the S-AT-treated enthesis was lower. Our study highlights the important role of the transition zone of multiphasic scaffolds in the treatment of complex interphase tissues such as the tendon-to-bone enthesis.


Assuntos
Fibroínas , Traumatismos dos Tendões , Alicerces Teciduais , Cicatrização , Animais , Fibroínas/farmacologia , Interfase , Ratos , Tendões
6.
Am J Sports Med ; 47(2): 462-467, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30550720

RESUMO

BACKGROUND: The paratenon is important for Achilles tendon healing. There is much interest in the use of exogenous growth factors (GFs) as potential agents for accelerating the healing of damaged Achilles tendons. PURPOSE/HYPOTHESIS: The present study used a rat model to study the responses of the injured Achilles tendon to GFs in the presence or absence of the paratenon. The hypothesis was that responses of the injured tendon to GFs would be lower in the absence of a paratenon. STUDY DESIGN: Controlled laboratory study. METHODS: A 4-mm defect was created in the right Achilles tendon of 60 skeletally mature rats, which were treated with a validated combination of GFs (bFGF, BMP-12, and TGF-ß1). Animals were randomly assigned to the intact paratenon (IP) group or resected paratenon (RP) group. Healing was studied anatomically, mechanically, and histologically after 1, 2, and 4 weeks. RESULTS: IP tendons showed improved healing compared with RP tendons. IP tendons were significantly stronger (32.2 N and 48.9 N, respectively) than RP tendons (20.1 N and 31.1 N, respectively) after 1 and 2 weeks. IP tendons did not elongate as much as RP tendons and had greater cross-sectional areas (18.0 mm2, 14.4 mm2, and 16.4 mm2, respectively) after 1, 2, and 4 weeks compared with RP tendons (10.5 mm2, 8.4 mm2, and 11.9 mm2, respectively). On histology, earlier collagen deposition and parallel orientation of fibrils were found for IP tendons. CONCLUSION: The paratenon is essential for efficient Achilles tendon healing. Healing with GFs in this Achilles tendon defect model was superior in the presence of the paratenon. CLINICAL RELEVANCE: Biological approaches to tendon engineering using GFs are in vogue and have been shown to improve healing of the rat Achilles tendon, most likely by inducing progenitor cells located within the paratenon. Clinically, resection or incision of the paratenon has been proposed for wound closure. Our data demonstrate the fundamental importance of the paratenon, which therefore should be preserved during Achilles tendon repair, especially if augmented with products such as platelet-rich plasma or autologous conditioned serum that are rich in GFs.


Assuntos
Tendão do Calcâneo/lesões , Tendão do Calcâneo/fisiopatologia , Proteína Morfogenética Óssea 2/uso terapêutico , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Fator de Crescimento Transformador beta1/uso terapêutico , Cicatrização/fisiologia , Tendão do Calcâneo/cirurgia , Animais , Colágeno/metabolismo , Masculino , Modelos Animais , Plasma Rico em Plaquetas , Ratos Sprague-Dawley
7.
J Bone Joint Surg Am ; 98(8): 677-87, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27098327

RESUMO

BACKGROUND: Reverse dynamization is a technology for enhancing the healing of osseous defects. With use of an external fixator, the axial stiffness across the defect is initially set low and subsequently increased. The purpose of the study described in this paper was to explore the efficacy of reverse dynamization under different conditions. METHODS: Rat femoral defects were stabilized with external fixators that allowed the stiffness to be modulated on living animals. Recombinant human bone morphogenetic protein-2 (rhBMP-2) was implanted into the defects on a collagen sponge. Following a dose-response experiment, 5.5 µg of rhBMP-2 was placed into the defect under conditions of very low (25.4-N/mm), low (114-N/mm), medium (185-N/mm), or high (254-N/mm) stiffness. Reverse dynamization was evaluated with 2 different starting stiffnesses: low (114 N/mm) and very low (25.4 N/mm). In both cases, high stiffness (254 N/mm) was imposed after 2 weeks. Healing was assessed with radiographs, micro-computed tomography (µCT), histological analysis, and mechanical testing. RESULTS: In the absence of dynamization, the medium-stiffness fixators provided the best healing. Reverse dynamization starting with very low stiffness was detrimental to healing. However, with low initial stiffness, reverse dynamization considerably improved healing with minimal residual cartilage, enhanced cortication, increased mechanical strength, and smaller callus. Histological analysis suggested that, in all cases, healing provoked by rhBMP-2 occurred by endochondral ossification. CONCLUSIONS: These data confirm the potential utility of reverse dynamization as a way of improving bone healing but indicate that the stiffness parameters need to be selected carefully. CLINICAL RELEVANCE: Reverse dynamization may reduce the amount of rhBMP-2 needed to induce healing of recalcitrant osseous lesions, reduce the time to union, and decrease the need for prolonged external fixation.


Assuntos
Proteína Morfogenética Óssea 2/administração & dosagem , Fixação de Fratura/métodos , Consolidação da Fratura/efeitos dos fármacos , Fator de Crescimento Transformador beta/administração & dosagem , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA