Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Remote Sens Environ ; 264: 112609, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34602655

RESUMO

Remote sensing-based measurements of solar-induced chlorophyll fluorescence (SIF) are useful for assessing plant functioning at different spatial and temporal scales. SIF is the most direct measure of photosynthesis and is therefore considered important to advance capacity for the monitoring of gross primary production (GPP) while it has also been suggested that its yield facilitates the early detection of vegetation stress. However, due to the influence of different confounding effects, the apparent SIF signal measured at canopy level differs from the fluorescence emitted at leaf level, which makes its physiological interpretation challenging. One of these effects is the scattering of SIF emitted from leaves on its way through the canopy. The escape fraction ( f esc ) describes the scattering of SIF within the canopy and corresponds to the ratio of apparent SIF at canopy level to SIF at leaf level. In the present study, the fluorescence correction vegetation index (FCVI) was used to determine f esc of far-red SIF for three structurally different crops (sugar beet, winter wheat, and fruit trees) from a diurnal data set recorded by the airborne imaging spectrometer HyPlant. This unique data set, for the first time, allowed a joint analysis of spatial and temporal dynamics of structural effects and thus the downscaling of far-red SIF from canopy ( SIF 760 canopy ) to leaf level ( SIF 760 leaf ). For a homogeneous crop such as winter wheat, it seems to be sufficient to determine f esc once a day to reliably scale SIF760 from canopy to leaf level. In contrast, for more complex canopies such as fruit trees, calculating f esc for each observation time throughout the day is strongly recommended. The compensation for structural effects, in combination with normalizing SIF760 to remove the effect of incoming radiation, further allowed the estimation of SIF emission efficiency ( ε SIF ) at leaf level, a parameter directly related to the diurnal variations of plant photosynthetic efficiency.

2.
Sensors (Basel) ; 19(9)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052251

RESUMO

Field pea cultivars are constantly improved through breeding programs to enhance biotic and abiotic stress tolerance and increase seed yield potential. In pea breeding, the Above Ground Biomass (AGBM) is assessed due to its influence on seed yield, canopy closure, and weed suppression. It is also the primary yield component for peas used as a cover crop and/or grazing. Measuring AGBM is destructive and labor-intensive process. Sensor-based phenotyping of such traits can greatly enhance crop breeding efficiency. In this research, high resolution RGB and multispectral images acquired with unmanned aerial systems were used to assess phenotypes in spring and winter pea breeding plots. The Green Red Vegetation Index (GRVI), Normalized Difference Vegetation Index (NDVI), Normalized Difference Red Edge Index (NDRE), plot volume, canopy height, and canopy coverage were extracted from RGB and multispectral information at five imaging times (between 365 to 1948 accumulated degree days/ADD after 1 May) in four winter field pea experiments and at three imaging times (between 1231 to 1648 ADD) in one spring field pea experiment. The image features were compared to ground-truth data including AGBM, lodging, leaf type, days to 50% flowering, days to physiological maturity, number of the first reproductive node, and seed yield. In two of the winter pea experiments, a strong correlation between image features and seed yield was observed at 1268 ADD (flowering). An increase in correlation between image features with the phenological traits such as days to 50% flowering and days to physiological maturity was observed at about 1725 ADD in these winter pea experiments. In the spring pea experiment, the plot volume estimated from images was highly correlated with ground truth canopy height (r = 0.83) at 1231 ADD. In two other winter pea experiments and the spring pea experiment, the GRVI and NDVI features were significantly correlated with AGBM at flowering. When selected image features were used to develop a least absolute shrinkage and selection operator model for AGBM estimation, the correlation coefficient between the actual and predicted AGBM was 0.60 and 0.84 in the winter and spring pea experiments, respectively. A SPOT-6 satellite image (1.5 m resolution) was also evaluated for its applicability to assess biomass and seed yield. The image features extracted from satellite imagery showed significant correlation with seed yield in two winter field pea experiments, however, the trend was not consistent. In summary, the study supports the potential of using unmanned aerial system-based imaging techniques to estimate biomass and crop performance in pea breeding programs.


Assuntos
Agricultura , Biomassa , Pisum sativum/crescimento & desenvolvimento , Tecnologia de Sensoriamento Remoto , Folhas de Planta/crescimento & desenvolvimento , Estações do Ano , Sementes/crescimento & desenvolvimento
3.
Front Plant Sci ; 10: 576, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134116

RESUMO

Washington State produces about 70% of total fresh market apples in the United States. One of the primary goals of apple breeding programs is the development of new cultivars resistant to devastating diseases such as fire blight. The overall objective of this study was to investigate high-throughput phenotyping techniques to evaluate fire blight disease symptoms in apple trees. In this regard, normalized stomatal conductance data acquired using a portable photosynthetic system, image data collected using RGB and multispectral cameras, and visible-near infrared spectral reflectance acquired using a hyperspectral sensing system, were independently evaluated to estimate the progression of fire blight infection in young apple trees. Sensors with ranging complexity - from simple RGB to multispectral imaging to hyperspectral system - were evaluated to select the most accurate technique for the assessment of fire blight disease symptoms. The proximal multispectral images and visible-near infrared spectral reflectance data were collected in two field seasons (2016, 2017); while, proximal side-view RGB images and multispectral images using unmanned aerial systems were collected in 2017. The normalized stomatal conductance data was correlated with disease severity rating (r = 0.51, P < 0.05). The features extracted from RGB images (e.g., maximum length of senesced leaves, area of senesced leaves, ratio between senesced and healthy leaf area) and multispectral images (e.g., vegetation indices) also demonstrated potential in evaluation of disease rating (|r| > 0.35, P < 0.05). The average classification accuracy achieved using visible-near infrared spectral reflectance data during the classification of susceptible from symptomless groups ranged between 71 and 93% using partial least square regression and quadratic support vector machine. In addition, fire blight disease ratings were compared with normalized difference spectral indices (NDSIs) that were generated from visible-near infrared reflectance spectra. The selected spectral bands in the range 710-2,340 nm used for computing NDSIs showed consistently higher correlation with disease severity rating than data acquired from RGB and multispectral imaging sensors across multiple seasons. In summary, these specific spectral bands can be used for evaluating fire blight disease severity in apple breeding programs and potentially as early fire blight disease detection tool to assist in production systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA