Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2011): 20231345, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37964526

RESUMO

There is widespread concern that cessation of grazing in historically grazed ecosystems is causing biotic homogenization and biodiversity loss. We used 12 montane grassland sites along an 800 km north-south gradient across the UK, to test whether cessation of grazing affects local α- and ß-diversity of below-ground food webs. We show cessation of grazing leads to strongly decreased α-diversity of most groups of soil microbes and fauna, particularly of relatively rare taxa. By contrast, the ß-diversity varied between groups of soil organisms. While most soil microbial communities exhibited increased homogenization after cessation of grazing, we observed decreased homogenization for soil fauna after cessation of grazing. Overall, our results indicate that exclusion of domesticated herbivores from historically grazed montane grasslands has far-ranging negative consequences for diversity of below-ground food webs. This underscores the importance of grazers for maintaining the diversity of below-ground communities, which play a central role in ecosystem functioning.


Assuntos
Microbiota , Solo , Cadeia Alimentar , Pradaria , Biodiversidade
2.
Proc Biol Sci ; 289(1984): 20221178, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36196543

RESUMO

Global warming and precipitation extremes (drought or increased precipitation) strongly affect plant primary production and thereby terrestrial ecosystem functioning. Recent syntheses show that combined effects of warming and precipitation extremes on plant biomass are generally additive, while individual experiments often show interactive effects, indicating that combined effects are more negative or positive than expected based on the effects of single factors. Here, we examined whether variation in biomass responses to single and combined effects of warming and precipitation extremes can be explained by plant growth form and community type. We performed a meta-analysis of 37 studies, which experimentally crossed warming and precipitation treatments, to test whether biomass responses to combined effects of warming and precipitation extremes depended on plant woodiness and community type (monocultures versus mixtures). Our results confirmed that the effects of warming and precipitation extremes were overall additive. However, combined effects of warming and drought on above- and belowground biomass were less negative in woody- than in herbaceous plant systems and more negative in plant mixtures than in monocultures. We further show that drought effects on plant biomass were more negative in greenhouse, than in field studies, suggesting that greenhouse experiments may overstate drought effects in the field. Our results highlight the importance of plant system characteristics to better understand plant responses to climate change.


Assuntos
Secas , Ecossistema , Biomassa , Mudança Climática , Plantas
3.
Mol Ecol ; 28(22): 4987-5005, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31618508

RESUMO

Soil nematode communities and food web indices can inform about the complexity, nutrient flows and decomposition pathways of soil food webs, reflecting soil quality. Relative abundance of nematode feeding and life-history groups are used for calculating food web indices, i.e., maturity index (MI), enrichment index (EI), structure index (SI) and channel index (CI). Molecular methods to study nematode communities potentially offer advantages compared to traditional methods in terms of resolution, throughput, cost and time. In spite of such advantages, molecular data have not often been adopted so far to assess the effects of soil management on nematode communities and to calculate these food web indices. Here, we used high-throughput amplicon sequencing to investigate the effects of tillage (conventional vs. reduced) and organic matter addition (low vs. high) on nematode communities and food web indices in 10 European long-term field experiments and we assessed the relationship between nematode communities and soil parameters. We found that nematode communities were more strongly affected by tillage than by organic matter addition. Compared to conventional tillage, reduced tillage increased nematode diversity (23% higher Shannon diversity index), nematode community stability (12% higher MI), structure (24% higher SI), and the fungal decomposition channel (59% higher CI), and also the number of herbivorous nematodes (70% higher). Total and labile organic carbon, available K and microbial parameters explained nematode community structure. Our findings show that nematode communities are sensitive indicators of soil quality and that molecular profiling of nematode communities has the potential to reveal the effects of soil management on soil quality.


Assuntos
Fungos/fisiologia , Nematoides/microbiologia , Nematoides/fisiologia , Animais , Ecossistema , Europa (Continente) , Cadeia Alimentar , Solo , Microbiologia do Solo
4.
Microorganisms ; 9(2)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669897

RESUMO

Outside its native range, the invasive plant species giant goldenrod (Solidago gigantea) has been shown to increase belowground fungal biomass. This non-obvious effect is poorly characterized; we don't know whether it is plant developmental stage-dependent, which fractions of the fungal community are affected, and whether it is reflected in the next trophic level. To address these questions, fungal assemblages in soil samples collected from invaded and uninvaded plots in two soil types were compared. Although using ergosterol as a marker for fungal biomass demonstrated a significant increase in fungal biomass, specific quantitative PCR (qPCR) assays did not point at a quantitative shift. MiSeq-based characterization of the belowground effects of giant goldenrod revealed a local increase of mainly Cladosporiaceae and Glomeraceae. This asymmetric boost in the fungal community was reflected in a specific shift in the fungivorous nematode community. Our findings provide insight into the potential impact of invasive plants on local fungal communities.

5.
Mol Ecol Resour ; 17(6): 1257-1270, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28323394

RESUMO

Soil biota are responsible for essential ecosystem services such as carbon storage, nutrient cycling and water retention. However, assessment of the condition of soil biota is hampered by an overwhelming level of diversity. With representatives in all trophic levels of the food web, nematode communities can be used as bioindicators. Accurate assessment of nematode assemblages requires insight into the distribution of specimens with distinct food preferences. With the availability of taxon-specific quantitative PCR assays, distribution patterns of multiple nematode groups can be investigated simultaneously. Here, microscale patchiness of 45 nematode taxa was studied on 12 sampling sites (each with four adjacent microplots) located on arable fields or semi-natural grasslands ('system'), and on marine, river clay or sandy soils ('soil type'). From each microplot, five composite samples were collected. Contrary to our expectations, an increase in the number of cores per composite sample did not result in more accurate measurements, and apparently the levels of microscale patchiness of the taxa are low compared to what has been reported for oligophagous plant-parasites. System and soil type did not affect microscale distribution. To investigate the level of patchiness in more detail, detection probability (DP) and variability of abundances were calculated. Common and widespread bacterivorous and fungivorous taxa had DP ≥ 90%, confirming low level of microscale patchiness. With DPs of 40%-70%, predators and most omnivores showed degrees of local clustering. An overview of mean variabilities of abundances is presented that offers insight into how feeding preferences impact the microscale distribution both between and within trophic groups.


Assuntos
Nematoides/fisiologia , Filogeografia , Solo/parasitologia , Animais , Comportamento Alimentar , Nematoides/crescimento & desenvolvimento , Espécies Sentinelas/crescimento & desenvolvimento , Análise Espacial
6.
PLoS One ; 12(9): e0185445, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28934343

RESUMO

Plant parasitism has arisen time and again in multiple phyla, including bacteria, fungi, insects and nematodes. In most of these organismal groups, the overwhelming diversity hampers a robust reconstruction of the origins and diversification patterns of this trophic lifestyle. Being a moderately diversified phylum with ≈ 4,100 plant parasites (15% of total biodiversity) subdivided over four independent lineages, nematodes constitute a major organismal group for which the genesis of plant parasitism could be mapped. Since substantial crop losses worldwide have been attributed to less than 1% of these plant parasites, research efforts are severely biased towards this minority. With the first molecular characterisation of numerous basal and supposedly harmless plant parasites as well as their non-parasitic relatives, we were able to generate a comprehensive molecular framework that allows for the reconstruction of trophic diversification for a complete phylum. In each lineage plant parasites reside in a single taxonomic grouping (family or order), and by taking the coverage of the next lower taxonomic level as a measure for representation, 50, 67, 100 and 85% of the known diversity was included. We revealed distinct gain and loss patterns with regard to plant parasitism per se as well as host exploitation strategies between these lineages. Our map of parasitic nematode biodiversity also revealed an unanticipated time reversal in which the two most ancient lineages showed the lowest level of ecological diversification and vice versa.


Assuntos
Interações Hospedeiro-Parasita , Nematoides/classificação , Nematoides/fisiologia , Plantas/parasitologia , Animais , Evolução Molecular , Nematoides/virologia , Filogenia , Plantas/microbiologia
7.
Annu Rev Phytopathol ; 53: 289-310, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26047569

RESUMO

Within the species-rich and trophically diverse phylum Nematoda, at least four independent major lineages of plant parasites have evolved, and in at least one of these major lineages plant parasitism arose independently multiple times. Ribosomal DNA data, sequence information from nematode-produced, plant cell wall-modifying enzymes, and the morphology and origin of the style(t), a protrusible piercing device used to penetrate the plant cell wall, all suggest that facultative and obligate plant parasites originate from fungivorous ancestors. Data on the nature and diversification of plant cell wall-modifying enzymes point at multiple horizontal gene transfer events from soil bacteria to bacterivorous nematodes resulting in several distinct lineages of fungal or oomycete-feeding nematodes. Ribosomal DNA frameworks with sequence data from more than 2,700 nematode taxa combined with detailed morphological information allow for explicit hypotheses on the origin of agronomically important plant parasites, such as root-knot, cyst, and lesion nematodes.


Assuntos
Evolução Biológica , Nematoides/fisiologia , Plantas/parasitologia , Animais , Produtos Agrícolas/parasitologia , DNA Ribossômico/genética , Proteínas de Helminto/genética , Nematoides/classificação , Nematoides/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA