Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33862085

RESUMO

Photoactive biological systems modify the optical properties of their chromophores, known as spectral tuning. Determining the molecular origin of spectral tuning is instrumental for understanding the function and developing applications of these biomolecules. Spectral tuning in flavin-binding fluorescent proteins (FbFPs), an emerging class of fluorescent reporters, is limited by their dependency on protein-bound flavins, whose structure and hence electronic properties cannot be altered by mutation. A blue-shifted variant of the plant-derived improved light, oxygen, voltage FbFP has been created by introducing a lysine within the flavin-binding pocket, but the molecular basis of this shift remains unconfirmed. We here structurally characterize the blue-shifted improved light, oxygen, voltage variant and construct a new blue-shifted CagFbFP protein by introducing an analogous mutation. X-ray structures of both proteins reveal displacement of the lysine away from the chromophore and opening up of the structure as instrumental for the blue shift. Site saturation mutagenesis and high-throughput screening yielded a red-shifted variant, and structural analysis revealed that the lysine side chain of the blue-shifted variant is stabilized close to the flavin by a secondary mutation, accounting for the red shift. Thus, a single additional mutation in a blue-shifted variant is sufficient to generate a red-shifted FbFP. Using spectroscopy, X-ray crystallography, and quantum mechanics molecular mechanics calculations, we provide a firm structural and functional understanding of spectral tuning in FbFPs. We also show that the identified blue- and red-shifted variants allow for two-color microscopy based on spectral separation. In summary, the generated blue- and red-shifted variants represent promising new tools for application in life sciences.


Assuntos
Proteínas de Bactérias/química , Chloroflexus/metabolismo , Flavinas/metabolismo , Proteínas Luminescentes/química , Proteínas Mutantes/química , Mutação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chloroflexus/crescimento & desenvolvimento , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Simulação de Dinâmica Molecular , Mutagênese , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fotoquímica , Conformação Proteica , Teoria Quântica
2.
Biochemistry ; 57(32): 4833-4847, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29989797

RESUMO

Light, oxygen, voltage (LOV) proteins, a ubiquitously distributed class of photoreceptors, regulate a wide variety of light-dependent physiological responses. Because of their modular architecture, LOV domains, i.e., the sensory domains of LOV photoreceptors, have been widely used for the construction of optogenetic tools. We recently described the structure and function of a short LOV protein (DsLOV) from the marine phototropic bacterium Dinoroseobacter shibae, for which, in contrast to other LOV photoreceptors, the dark state represents the physiologically relevant signaling state. Among bacterial LOV photoreceptors, DsLOV possesses an exceptionally fast dark recovery, corroborating its function as a "dark" sensor. To address the mechanistic basis of this unusual characteristic, we performed a comprehensive mutational, kinetic, thermodynamic, and structural characterization of DsLOV. The mechanistic basis of the fast dark recovery of the protein was revealed by mutation of the previously noted uncommon residue substitution at position 49 found in DsLOV. The substitution of M49 with different residues that are naturally conserved in LOV domains tuned the dark-recovery time of DsLOV over 3 orders of magnitude, without grossly affecting its overall structure or the light-dependent structural change observed for the wild-type protein. Our study thus provides a striking example of how nature can achieve LOV photocycle tuning by subtle structural alterations in the LOV domain active site, highlighting the easy evolutionary adaptability of the light sensory function. At the same time, our data provide guidance for the mutational photocycle tuning of LOV domains, with relevance for the growing field of optogenetics.


Assuntos
Proteínas de Bactérias/química , Luz , Oxigênio/química , Rhodobacteraceae/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dicroísmo Circular , Cristalografia por Raios X , Cinética , Mutagênese Sítio-Dirigida , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Conformação Proteica , Pseudomonas putida/química , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Rhodobacteraceae/genética , Rhodobacteraceae/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
PLoS One ; 13(7): e0200746, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30011332

RESUMO

Light, oxygen, voltage (LOV) photoreceptors consist of conserved photo-responsive domains in bacteria, archaea, plants and fungi, and detect blue-light via a flavin cofactor. We investigated the blue-light induced conformational transition of the dimeric photoreceptor PpSB1-LOV-R66I from Pseudomonas putida in solution by using small-angle X-ray scattering (SAXS). SAXS experiments of the fully populated light- and dark-states under steady-state conditions revealed significant structural differences between the two states that are in agreement with the known structures determined by crystallography. We followed the transition from the light- to the dark-state by using SAXS measurements in real-time. A two-state model based on the light- and dark-state conformations could describe the measured time-course SAXS data with a relaxation time τREC of ~ 34 to 35 min being larger than the recovery time found with UV/vis spectroscopy. Unlike the flavin chromophore-based UV/vis method that is sensitive to the local chromophore environment in flavoproteins, SAXS-based assay depends on protein conformational changes and provides with an alternative to measure the recovery kinetics.


Assuntos
Flavoproteínas/metabolismo , Oxigênio/metabolismo , Fotorreceptores Microbianos/metabolismo , Pseudomonas putida/metabolismo , Espalhamento a Baixo Ângulo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Mononucleotídeo de Flavina/química , Cinética , Domínios Proteicos , Estrutura Secundária de Proteína , Espectrofotometria Ultravioleta , Difração de Raios X
4.
Sci Rep ; 7: 42971, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28211532

RESUMO

Unique features of Light-Oxygen-Voltage (LOV) proteins like relatively small size (~12-19 kDa), inherent modularity, highly-tunable photocycle and oxygen-independent fluorescence have lately been exploited for the generation of optical tools. Structures of LOV domains reported so far contain a flavin chromophore per protein molecule. Here we report two new findings on the short LOV protein W619_1-LOV from Pseudomonas putida. First, the apo-state crystal structure of W619_1-LOV at 2.5 Å resolution reveals conformational rearrangements in the secondary structure elements lining the chromophore pocket including elongation of the Fα helix, shortening of the Eα-Fα loop and partial unfolding of the Eα helix. Second, the apo W619_1-LOV protein binds both natural and structurally modified flavin chromophores. Remarkably different photophysical and photochemical properties of W619_1-LOV bound to 7-methyl-8-chloro-riboflavin (8-Cl-RF) and lumichrome imply application of these variants as novel optical tools as they offer advantages such as no adduct state formation, and a broader choice of wavelengths for in vitro studies.


Assuntos
Proteínas de Bactérias/química , Pseudomonas putida/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Fluorescência
5.
Sci Rep ; 7(1): 13346, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042655

RESUMO

Blue-light absorption by the flavin chromophore in light, oxygen, voltage (LOV) photoreceptors triggers photochemical reactions that lead to the formation of a flavin-cysteine adduct. While it has long been assumed that adduct formation is essential for signaling, it was recently shown that LOV photoreceptor variants devoid of the photoactive cysteine can elicit a functional response and that flavin photoreduction to the neutral semiquinone radical is sufficient for signal transduction. Currently, the mechanistic basis of the underlying electron- (eT) and proton-transfer (pT) reactions is not well understood. We here reengineered pT into the naturally not photoreducible iLOV protein, a fluorescent reporter protein derived from the Arabidopsis thaliana phototropin-2 LOV2 domain. A single amino-acid substitution (Q489D) enabled efficient photoreduction, suggesting that an eT pathway is naturally present in the protein. By using a combination of site-directed mutagenesis, steady-state UV/Vis, transient absorption and electron paramagnetic resonance spectroscopy, we investigate the underlying eT and pT reactions. Our study provides strong evidence that several Tyr and Trp residues, highly conserved in all LOV proteins, constitute the eT pathway for flavin photoreduction, suggesting that the propensity for photoreduction is evolutionary imprinted in all LOV domains, while efficient pT is needed to stabilize the neutral semiquinone radical.


Assuntos
Cisteína/metabolismo , Transporte de Elétrons , Células Fotorreceptoras/metabolismo , Proteínas/metabolismo , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Genes Reporter , Concentração de Íons de Hidrogênio , Luz , Oxigênio/metabolismo , Processos Fotoquímicos , Células Fotorreceptoras/efeitos da radiação , Proteínas/química , Proteínas/genética , Proteínas Recombinantes de Fusão , Análise Espectral
6.
J Mol Biol ; 428(19): 3721-36, 2016 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-27291287

RESUMO

Light-Oxygen-Voltage (LOV) domains represent the photo-responsive domains of various blue-light photoreceptor proteins and are widely distributed in plants, algae, fungi, and bacteria. Here, we report the dark-state crystal structure of PpSB1-LOV, a slow-reverting short LOV protein from Pseudomonas putida that is remarkably different from our previously published "fully light-adapted" structure [1]. A direct comparison of the two structures provides insight into the light-activated signaling mechanism. Major structural differences involve a~11Å movement of the C terminus in helix Jα, ~4Å movement of Hß-Iß loop, disruption of hydrogen bonds in the dimer interface, and a~29° rotation of chain-B relative to chain-A as compared to the light-state dimer. Both crystal structures and solution NMR data are suggestive of the key roles of a conserved glutamine Q116 and the N-cap region consisting of A'α-Aß loop and the A'α helix in controlling the light-activated conformational changes. The activation mechanism proposed here for the PpSB1-LOV supports a rotary switch mechanism and provides insights into the signal propagation mechanism in naturally existing and artificial LOV-based, two-component systems and regulators.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transdução de Sinal Luminoso , Pseudomonas putida/enzimologia , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA