Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Annu Rev Cell Dev Biol ; 25: 407-29, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19575657

RESUMO

For all animals, cell migration is an essential and highly regulated process. Cells migrate to shape tissues, to vascularize tissues, in wound healing, and as part of the immune response. Unfortunately, tumor cells can also become migratory and invade surrounding tissues. Some cells migrate as individuals, but many cell types will, under physiological conditions, migrate collectively in tightly or loosely associated groups. This includes invasive tumor cells. This review discusses different types of collective cell migration, including sheet movement, sprouting and branching, streams, and free groups, and highlights recent findings that provide insight into cells' organization and behavior. Cells performing collective migration share many cell biological characteristics with independently migrating cells but, by affecting one another mechanically and via signaling, these cell groups are subject to additional regulation and constraints. New properties that emerge from this connectivity can contribute to shaping, guiding, and ultimately ensuring tissue function.


Assuntos
Movimento Celular , Animais , Adesão Celular , Polaridade Celular , Desenvolvimento Embrionário , Humanos , Invasividade Neoplásica , Neoplasias/patologia
2.
Genes Dev ; 28(10): 1048-53, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24831700

RESUMO

The transcription cofactor MAL is regulated by free actin levels and thus by actin dynamics. MAL, together with its DNA-binding partner, SRF, is required for invasive cell migration and in experimental metastasis. Although MAL/SRF has many targets, we provide genetic evidence in both Drosophila and human cellular models that actin is the key target that must be regulated by MAL/SRF for invasive cell migration. By regulating MAL/SRF activity, actin protein feeds back on production of actin mRNA to ensure sufficient supply of actin. This constitutes a dedicated homeostatic feedback system that provides a foundation for cellular actin dynamics.


Assuntos
Actinas/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/citologia , Feminino , Homeostase , Humanos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fator de Resposta Sérica/metabolismo , Transativadores , Transcriptoma
3.
Proc Natl Acad Sci U S A ; 109(6): 2027-32, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22308382

RESUMO

Directed cell migration is important for normal animal development and physiology. The process can also be subverted by tumor cells to invade other tissues and to metastasize. Some cells, such as leukocytes, migrate individually; other cells migrate together in groups or sheets, called collective cell migration. Guidance of individually migrating cells depends critically on subcellularly localized perception and transduction of signals. For collective cell migration, guidance could result from cells within a group achieving different signaling levels, with directionality then encoded in the collective rather than in individual cells. Here we subject this collective guidance hypothesis to direct tests, using migration of border cells during Drosophila oogenesis as our model system. These cells normally use two receptor tyrosine kinases (RTKs), PDGF/VEGF-related receptor (PVR) and EGFR, to read guidance cues secreted by the oocyte. Elevated but delocalized RTK signaling in one cell of the cluster was achieved by overexpression of PVR in the absence of ligand or by overexpression of fusion receptors unable to detect Drosophila ligands; alternatively, Rac was photoactivated centrally within a single cell. In each case, one cell within the group was in a high signal state, whereas others were in low signal states. The high signal cell directed cluster movement effectively. We conclude that differences in cell signaling states are sufficient to direct collective migration and are likely a substantial contributor to normal guidance. Cell signaling states could manifest as differences in gene expression or metabolite levels and thus differ substantially from factors normally considered when analyzing eukaryotic cell guidance.


Assuntos
Movimento Celular , Drosophila melanogaster/citologia , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Ativação Enzimática , Feminino , Proteínas de Fluorescência Verde/metabolismo , Ligantes , Oócitos/citologia , Oócitos/enzimologia , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
4.
EMBO Rep ; 13(11): 984-91, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23059978

RESUMO

Cells can migrate individually or collectively. Collective movement is common during normal development and is also a characteristic of some cancers. This review discusses recent insights into features that are unique to collective cell migration, as well as properties that emerge from these features. The first feature is that cells of the collective affect each other through adhesion, force-dependent and signalling interactions. The second feature is that cells of the collective differ from one another: leaders from followers, tip from stalk and front from back. These are dynamic differences that are important for directional movement. Last, an unexpected property is discussed: epithelial cells can rotate persistently in constrained spaces.


Assuntos
Movimento Celular , Células Epiteliais/fisiologia , Animais , Adesão Celular , Comunicação Celular , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Humanos , Rotação
5.
Nature ; 448(7151): 362-5, 2007 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-17637670

RESUMO

Although directed migration is a feature of both individual cells and cell groups, guided migration has been studied most extensively for single cells in simple environments. Collective guidance of cell groups remains poorly understood, despite its relevance for development and metastasis. Neural crest cells and neuronal precursors migrate as loosely organized streams of individual cells, whereas cells of the fish lateral line, Drosophila tracheal tubes and border-cell clusters migrate as more coherent groups. Here we use Drosophila border cells to examine how collective guidance is performed. We report that border cells migrate in two phases using distinct mechanisms. Genetic analysis combined with live imaging shows that polarized cell behaviour is critical for the initial phase of migration, whereas dynamic collective behaviour dominates later. PDGF- and VEGF-related receptor and epidermal growth factor receptor act in both phases, but use different effector pathways in each. The myoblast city (Mbc, also known as DOCK180) and engulfment and cell motility (ELMO, also known as Ced-12) pathway is required for the early phase, in which guidance depends on subcellular localization of signalling within a leading cell. During the later phase, mitogen-activated protein kinase and phospholipase Cgamma are used redundantly, and we find that the cluster makes use of the difference in signal levels between cells to guide migration. Thus, information processing at the multicellular level is used to guide collective behaviour of a cell group.


Assuntos
Movimento Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Proteínas do Citoesqueleto , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Genes Essenciais/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação/genética , Fosfolipase C gama/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Adaptadoras da Sinalização Shc , Proteínas rac de Ligação ao GTP/metabolismo , Quinases raf/genética , Quinases raf/metabolismo
6.
Proc Natl Acad Sci U S A ; 107(16): 7323-8, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20368415

RESUMO

Guidance receptor signaling is crucial for steering migrating cells. Despite this, we generally lack direct measurements of such signaling. Border cells in Drosophila migrate as a tightly associated group, but dynamically, with front and rear cells exchanging places. They use the receptor tyrosine kinase (RTK) PDGF/VEGF receptor (PVR) as a guidance receptor, perceiving the attractant Pvf1. Here we determine the spatial distribution of PVR signaling by generating an antibody that specifically detects activated PVR in situ. PVR activity is very low in migrating border cells, due to strong activity of cellular phosphatases. Measurements of signal at the cell cortex show variability but a strong bias for both total active PVR and specific activity of PVR to be elevated at the front versus side of the leading cell, often with several-fold difference in signal levels. This polarized active PVR signal requires the E3 ubiquitin ligase Cbl and the recycling regulator Rab11, indicating a dependency on receptor trafficking. The endogenous ligand gradient contributes to shaping of signaling by increasing the specific activity of PVR toward the source in front cells. Surprisingly, signaling is also elevated at the back versus the side of rear cells. This distally polarized distribution of active PVR is ligand independent. Thus the actual guidance signal transmitted in border cells appears to integrate perceived ligand distribution with cell polarity or cell orientation with respect to the cluster. A general implication is that both group configuration and extrinsic cues can directly modulate guidance receptor signaling during collective cell migration.


Assuntos
Movimento Celular , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Drosophila melanogaster/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Ligantes , Modelos Biológicos , Oócitos/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais
7.
Dev Cell ; 10(4): 497-508, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16580994

RESUMO

Cell migration within a natural context is tightly controlled, often by specific transcription factors. However, the switch from stationary to migratory behavior is poorly understood. Border cells perform a spatially and temporally controlled invasive migration during Drosophila oogenesis. Slbo, a C/EBP family transcriptional activator, is required for them to become migratory. We purified wild-type and slbo mutant border cells as well as nonmigratory follicle cells and performed comparative whole-genome expression profiling, followed by functional tests of the contributions of identified targets to migration. About 300 genes were significantly upregulated in border cells, many dependent on Slbo. Among these, the microtubule regulator Stathmin was strongly upregulated and was required for normal migration. Actin cytoskeleton regulators were also induced, including, surprisingly, a large cluster of "muscle-specific" genes. We conclude that Slbo induces multiple cytoskeletal effectors, and that each contributes to the behavioral changes in border cells.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Movimento Celular/fisiologia , Proteínas de Drosophila/fisiologia , Perfilação da Expressão Gênica , Oogênese/fisiologia , Ovário/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas do Citoesqueleto/fisiologia , Drosophila , Proteínas de Drosophila/genética , Feminino , Oogênese/genética , Ovário/citologia , Ovário/metabolismo , Estatmina/fisiologia , Fatores de Transcrição/genética , Regulação para Cima
8.
Nat Cell Biol ; 4(9): 715-9, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12198500

RESUMO

The migration of border cells during Drosophila melanogaster oogenesis is a simple and powerful system for studying invasive cell migration in vivo. Border cells are somatic cells that delaminate from the follicular epithelium of an egg chamber and invade the germ line cluster. They migrate between the nurse cells to reach the oocyte, using DE-cadherin for adhesion to the substratum. Border cells take approximately 6 h to migrate a distance of 100 microm. The migration is guided by EGFR (epidermal growth factor receptor) and PVR (platelet-derived growth factor (PDGF)/vascular endothelial growth factor (VEGF) receptor). Here, we show that a single long cellular extension (LCE), several cell diameters in length, is formed at the initiation of migration. The LCE may function as a 'pathfinder' in response to guidance cues. LCE growth requires directional guidance signals and specific adhesion to the substratum. Interference with actin-myosin interactions allows continued LCE growth while preventing translocation of the cell bodies. We discuss similarities between LCEs and axons and the use of LCE-like structures as a general mechanism for initiating invasive migration in vivo.


Assuntos
Movimento Celular/fisiologia , Drosophila melanogaster/citologia , Actinas/fisiologia , Animais , Animais Geneticamente Modificados , Caderinas/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Proteínas do Ovo/fisiologia , Receptores ErbB/fisiologia , Feminino , Genes de Insetos , Proteínas de Fluorescência Verde , Óperon Lac , Proteínas Luminescentes/genética , Mutação , Oogênese/fisiologia , Transdução de Sinais
9.
Curr Biol ; 17(12): 1067-71, 2007 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-17555966

RESUMO

Stathmin, or Oncoprotein 18 (Op18), is the founding member of a phosphoprotein family that can regulate the microtubule cytoskeleton by sequestering tubulin and promoting microtubule catastrophe. Stathmin is subject to spatially and temporally controlled regulatory phosphorylation, which inhibits its interaction with tubulin. Drosophila Stathmin has similar properties to the mammalian proteins. We find that Drosophila Stathmin is required for specific microtubule-dependent processes: maintenance of oocyte identity within a germline cyst and localization of polarity determinants. Unexpectedly, microtubules are less abundant in stathmin mutant cells compared to normal cells, showing that a key function of Stathmin in vivo is the long-term maintenance of the microtubule cytoskeleton. The microtubule network re-forms more slowly after coldshock in stathmin mutant follicle cells. Surprisingly, stathmin mutant animals and tissues show a marked decrease in total tubulin-protein levels, and this might explain the effect on the microtubule cytoskeleton. Stathmin overexpression also increases tubulin protein. Free alpha- and beta-tubulin have been shown to negatively autoregulate their own synthesis. We suggest that Stathmin serves to maintain a noninhibitory, soluble, and releasable tubulin pool.


Assuntos
Drosophila/metabolismo , Drosophila/fisiologia , Regulação da Expressão Gênica , Estatmina/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Polaridade Celular , Drosophila/genética , Microtúbulos/metabolismo , Estatmina/genética , Tubulina (Proteína)/genética
10.
Dev Cell ; 9(2): 197-207, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16054027

RESUMO

Guidance receptors detect extracellular cues and instruct migrating cells how to orient in space. Border cells perform a directional invasive migration during Drosophila oogenesis and use two receptor tyrosine kinases (RTKs), EGFR and PVR (PDGF/VEGF Receptor), to read guidance cues. We find that spatial localization of RTK signaling within these migrating cells is actively controlled. Border cells lacking Cbl, an RTK-associated E3 ubiquitin ligase, have delocalized guidance signaling, resulting in severe migration defects. Absence of Sprint, a receptor-recruited, Ras-activated Rab5 guanine exchange factor, gives related defects. In contrast, increasing the level of RTK signaling by receptor overexpression or removing Hrs and thereby decreasing RTK degradation does not perturb migration. Cbl and Sprint both regulate early steps of RTK endocytosis. Thus, a physiological role of RTK endocytosis is to ensure localized intracellular response to guidance cues by stimulating spatial restriction of signaling.


Assuntos
Movimento Celular/fisiologia , Proteínas de Drosophila/fisiologia , Endocitose/fisiologia , Receptores ErbB/fisiologia , Proteínas Quinases/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Receptores de Peptídeos de Invertebrados/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Drosophila , Proteínas de Drosophila/genética , Complexos Endossomais de Distribuição Requeridos para Transporte , Receptores ErbB/genética , Feminino , Fatores de Troca do Nucleotídeo Guanina , Mutação , Oócitos/fisiologia , Fosfoproteínas/genética , Fosfoproteínas/fisiologia , Proteínas Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-cbl , Receptores Proteína Tirosina Quinases/genética , Receptores de Peptídeos de Invertebrados/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/fisiologia , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/fisiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/fisiologia
11.
Dev Cell ; 9(5): 711-20, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16256745

RESUMO

We have found that the Drosophila gene vps25 possesses several properties of a tumor suppressor. First, vps25 mutant cells activate Notch and Dpp receptor signaling, inducing ectopic organizers in developing eyes and limbs and consequent overproliferation of both mutant and nearby wild-type cells. Second, as the mutant cells proliferate, they lose their epithelial organization and undergo apoptosis. Strikingly, when apoptosis of mutant cells is blocked, tumor-like overgrowths are formed that are capable of metastasis. vps25 encodes a component of the ESCRT-II complex, which sorts membrane proteins into multivesicular bodies during endocytic trafficking to the lysosome. Activation of Notch and Dpp receptor signaling in mutant cells results from an endocytic blockage that causes accumulation of these receptors and other signaling components in endosomes. These results highlight the importance of endocytic trafficking in regulating signaling and epithelial organization and suggest a possible role for ESCRT components in human cancer.


Assuntos
Drosophila/genética , Endossomos/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose/fisiologia , Proliferação de Células , Clonagem Molecular , Drosophila/citologia , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/metabolismo , Endossomos/genética , Células Epiteliais/metabolismo , Extremidades/crescimento & desenvolvimento , Olho/citologia , Olho/crescimento & desenvolvimento , Mutação , Metástase Neoplásica , Transporte Proteico/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia
12.
J Cell Biol ; 170(5): 803-12, 2005 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-16129787

RESUMO

Cadherin-mediated adhesion can be regulated at many levels, as demonstrated by detailed analysis in cell lines. We have investigated the requirements for Drosophila melanogaster epithelial (DE) cadherin regulation in vivo. Investigating D. melanogaster oogenesis as a model system allowed the dissection of DE-cadherin function in several types of adhesion: cell sorting, cell positioning, epithelial integrity, and the cadherin-dependent process of border cell migration. We generated multiple fusions between DE-cadherin and alpha-catenin as well as point-mutated beta-catenin and analyzed their ability to support these types of adhesion. We found that (1) although linking DE-cadherin to alpha-catenin is essential, regulation of the link is not required in any of these types of adhesion; (2) beta-catenin is required only to link DE-cadherin to alpha-catenin; and (3) the cytoplasmic domain of DE-cadherin has an additional specific function for the invasive migration of border cells, which is conserved to other cadherins. The nature of this additional function is discussed.


Assuntos
Caderinas/metabolismo , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Sequência de Aminoácidos , Animais , Proteínas do Domínio Armadillo , Caderinas/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Dados de Sequência Molecular , Oócitos/citologia , Oócitos/fisiologia , Fenótipo , Mutação Puntual , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição , alfa Catenina , beta Catenina
13.
Dev Cell ; 7(1): 85-93, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15239956

RESUMO

Cells migrating through a tissue exert force via their cytoskeleton and are themselves subject to tension, but the effects of physical forces on cell behavior in vivo are poorly understood. Border cell migration during Drosophila oogenesis is a useful model for invasive cell movement. We report that this migration requires the activity of the transcriptional factor serum response factor (SRF) and its cofactor MAL-D and present evidence that nuclear accumulation of MAL-D is induced by cell stretching. Border cells that cannot migrate lack nuclear MAL-D but can accumulate it if they are pulled by other migrating cells. Like mammalian MAL, MAL-D also responds to activated Diaphanous, which affects actin dynamics. MAL-D/SRF activity is required to build a robust actin cytoskeleton in the migrating cells; mutant cells break apart when initiating migration. Thus, tension-induced MAL-D activity may provide a feedback mechanism for enhancing cytoskeletal strength during invasive migration.


Assuntos
Movimento Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Oócitos/metabolismo , Oogênese/genética , Fator de Resposta Sérica/metabolismo , Citoesqueleto de Actina/metabolismo , Transporte Ativo do Núcleo Celular/genética , Animais , Proteínas de Transporte/metabolismo , Tamanho Celular/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , DNA Complementar/análise , DNA Complementar/genética , Drosophila/citologia , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/isolamento & purificação , Retroalimentação/fisiologia , Retroalimentação Fisiológica/fisiologia , Forminas , Dados de Sequência Molecular , Mutação/genética , Proteínas Nucleares/genética , Proteínas Nucleares/isolamento & purificação , Oócitos/citologia , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Fator de Resposta Sérica/genética , Estresse Mecânico , Fatores de Transcrição
14.
Dev Cell ; 7(1): 73-84, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15239955

RESUMO

The Drosophila PDGF/VEGF receptor (PVR) has known functions in the guidance of cell migration. We now demonstrate that during embryonic hematopoiesis, PVR has a role in the control of antiapoptotic cell survival. In Pvr mutants, a large fraction of the embryonic hemocyte population undergoes apoptosis, and the remaining blood cells cannibalistically phagocytose their dying peers. Consequently, total hemocyte numbers drop dramatically during embryogenesis, and large aggregates of engorged macrophages carrying multiple apoptotic corpses form. Hemocyte-specific expression of the pan-caspase inhibitor p35 in Pvr mutants eliminates hemocyte aggregates and restores blood cell counts and morphology. Additional rescue experiments suggest involvement of the Ras pathway in PVR-mediated blood cell survival. In cell culture, we demonstrate that PVR directly controls survival of a hemocyte cell line. This function of PVR shows striking conservation with mammalian hematopoiesis and establishes Drosophila as a model to study hematopoietic cell survival in development and disease.


Assuntos
Células Sanguíneas/metabolismo , Sobrevivência Celular/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Embrião não Mamífero/embriologia , Hematopoese/genética , Receptores Proteína Tirosina Quinases/fisiologia , Proteínas Virais , Animais , Apoptose/genética , Células Sanguíneas/citologia , Agregação Celular/genética , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Macrófagos/fisiologia , Modelos Animais , Mutação/genética , Fagocitose/genética , Proteínas/genética , Proteínas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais/genética , Proteínas ras/genética , Proteínas ras/metabolismo
15.
Trends Cell Biol ; 12(7): 325-31, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12185849

RESUMO

Cell migration occurs in many different contexts. Amoebae and other isolated cells migrate in culture. In animals, 'professional' migratory cells of the immune system constantly survey the body for intruders, whereas other cell types perform specific developmentally regulated migrations. One simple model for the latter type of event is migration of border cells during Drosophila oogenesis. Recent findings have shed light on how border cell fate is induced and on how the migration is guided. This article discusses the implications of these studies and compares (invasive) migration through a tissue with what is known about cells crawling on a flat substratum.


Assuntos
Polaridade Celular/fisiologia , Quimiotaxia , Animais , Comunicação Celular , Polaridade Celular/genética , Drosophila/citologia , Drosophila/embriologia , Humanos , Oogênese , Transdução de Sinais
16.
J Cell Biol ; 160(3): 313-9, 2003 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-12551956

RESUMO

Homophilic cell adhesion mediated by classical cadherins is important for many developmental processes. Proteins that interact with the cytoplasmic domain of cadherin, in particular the catenins, are thought to regulate the strength and possibly the dynamics of adhesion. beta-catenin links cadherin to the actin cytoskeleton via alpha-catenin. The role of p120/delta-catenin proteins in regulating cadherin function is less clear. Both beta-catenin and p120/delta-catenin are conserved in Drosophila. Here, we address the importance of cadherin-catenin interactions in vivo, using mutant variants of Drosophila epithelial cadherin (DE-cadherin) that are selectively defective in p120ctn (DE-cadherin-AAA) or beta-catenin-armadillo (DE-cadherin-Delta beta) interactions. We have analyzed the ability of these proteins to substitute for endogenous DE-cadherin activity in multiple cadherin-dependent processes during Drosophila development and oogenesis; epithelial integrity, follicle cell sorting, oocyte positioning, as well as the dynamic adhesion required for border cell migration. As expected, DE-cadherin-Delta beta did not substitute for DE-cadherin in these processes, although it retained some residual activity. Surprisingly, DE-cadherin-AAA was able to substitute for the wild-type protein in all contexts with no detectable perturbations. Thus, interaction with p120/delta-catenin does not appear to be required for DE-cadherin function in vivo.


Assuntos
Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Drosophila melanogaster/metabolismo , Embrião não Mamífero/metabolismo , Fosfoproteínas/metabolismo , Animais , Proteínas do Domínio Armadillo , Sítios de Ligação/genética , Padronização Corporal/genética , Células CHO , Caderinas/genética , Cateninas , Adesão Celular/genética , Moléculas de Adesão Celular/genética , Agregação Celular/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Movimento Celular/fisiologia , Anormalidades Congênitas/genética , Cricetinae , Proteínas do Citoesqueleto/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Masculino , Modelos Animais , Mutação/genética , Oogênese/fisiologia , Fosfoproteínas/genética , Estrutura Terciária de Proteína/genética , delta Catenina
17.
EMBO J ; 28(1): 1-3, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19057510
18.
Genetics ; 176(3): 1579-90, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17483425

RESUMO

Migration of border cells during Drosophila melanogaster oogenesis is a good model system for investigating the genetic requirements for cell migration in vivo. We present a sensitized loss-of-function screen used to identify new genes required in border cells for their migration. Chromosomes bearing FRTs on all four major autosomal arms were mutagenized by insertions of the transposable element PiggyBac, allowing multiple parallel clonal screens and easy identification of the mutated gene. For border cells, we analyzed homozygous mutant clones positively marked with lacZ and sensitized by expression of dominant-negative PVR, the guidance receptor. We identified new alleles of genes already known to be required for border cell migration, including aop/yan, DIAP1, and taiman as well as a conserved Slbo-regulated enhancer downstream of shg/DE-cadherin. Mutations in genes not previously described to be required in border cells were also uncovered: hrp48, vir, rme-8, kismet, and puckered. puckered was unique in that the migration defects were observed only when PVR signaling was reduced. We present evidence that an excess of JNK signaling is deleterious for migration in the absence of PVR activity at least in part through Fos transcriptional activity and possibly through antagonistic effects on DIAP1.


Assuntos
Movimento Celular , Elementos de DNA Transponíveis , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mutação , Oogênese , Transdução de Sinais , Transcrição Gênica
19.
J Leukoc Biol ; 81(1): 263-71, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17046968

RESUMO

Macrophages detecting and migrating toward sites of injury and infection represent one of the first steps in an immune response. Here we directly image macrophage birth and migration in vivo in transgenic medaka fish. Macrophages are born as frequently dividing, immotile cells with spherical morphology that differentiate into flat, highly motile cells. They retain mitotic activity while spreading over the entire body. Cells follow restricted paths not only in directed migration, but also during patrolling. Along those paths the macrophages rapidly patrol the tissue and respond to wounding and bacterial infection from long distances. Upon injury they increase their speed and migratory persistence. Specifically targeting PI3-kinase isoforms efficiently blocks the wounding response and results in a distinct inhibition of cell motility and chemotaxis. Our study provides in situ insights into the properties of immature and migratory macrophages and presents a unique model to further test modulating compounds in vivo.


Assuntos
Quimiotaxia , Desenvolvimento Embrionário/fisiologia , Inflamação/metabolismo , Macrófagos/fisiologia , Oryzias/imunologia , Animais , Animais Geneticamente Modificados , Leucócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
20.
PLoS Genet ; 1(4): e55, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16254604

RESUMO

This article reports the production of an EP-element insertion library with more than 3,700 unique target sites within the Drosophila melanogaster genome and its use to systematically identify genes that affect embryonic muscle pattern formation. We designed a UAS/GAL4 system to drive GAL4-responsive expression of the EP-targeted genes in developing apodeme cells to which migrating myotubes finally attach and in an intrasegmental pattern of cells that serve myotubes as a migration substrate on their way towards the apodemes. The results suggest that misexpression of more than 1.5% of the Drosophila genes can interfere with proper myotube guidance and/or muscle attachment. In addition to factors already known to participate in these processes, we identified a number of enzymes that participate in the synthesis or modification of protein carbohydrate side chains and in Ubiquitin modifications and/or the Ubiquitin-dependent degradation of proteins, suggesting that these processes are relevant for muscle pattern formation.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas Genéticas , Músculos/metabolismo , Animais , Padronização Corporal , Ciclo Celular , Movimento Celular , Citoesqueleto/metabolismo , Genes de Insetos , Fibras Musculares Esqueléticas/metabolismo , Músculos/citologia , Músculos/patologia , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA