Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834137

RESUMO

In recent years, oligonucleotides have become more important in research, drug approvals and medical therapies. Due to this growing interest in pharmaceutical applications, it is essential to develop reliable analytical methods for this substance class. In this work, we present a quantification method using liquid chromatography coupled with tandem mass spectrometry by applying an isobaric oligonucleotide standard. In addition to a proof of principle, we perform a method qualification to assess its readiness for validation according to ICH Q2 guidelines. In addition to good linearity, sensitivity, accuracy and recovery, the method showed no significant matrix effects. Furthermore, we demonstrated the application of the method by applying the quantification in a biological matrix, as well as an exemplary degradation of an oligonucleotide in bovine plasma.


Assuntos
Oligonucleotídeos , Espectrometria de Massas em Tandem , Animais , Bovinos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Padrões de Referência , Plasma/química , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes
2.
Molecules ; 28(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770836

RESUMO

Due to the increasing pharmaceutical interest of oligonucleotides, for example in antisense therapy and vaccines, their analytical characterization is of fundamental importance due to their complex structure. For this purpose, mass spectrometry is a viable tool for structural studies of nucleic acids. Structural information regarding the primary sequence of a nucleic acid can reliably be gained via tandem mass spectrometry (MSMS) fragmentation. In this work, we present the characteristic fragmentation behavior of short-chain oligonucleotides (15-35 nucleotides) with respect to the collision-induced dissociation (CID) voltage used. The relationship and influence of the length of the oligonucleotide and its charge state is also discussed. The results presented here can be helpful for estimating the required fragmentation energies of short-chain oligonucleotides and their sequencing.


Assuntos
Ácidos Nucleicos , Oligonucleotídeos , Oligonucleotídeos/química , Espectrometria de Massas em Tandem/métodos , Nucleotídeos , Fenômenos Físicos , Espectrometria de Massas por Ionização por Electrospray
3.
Proc Natl Acad Sci U S A ; 115(33): E7768-E7775, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30061387

RESUMO

The adaptor molecule stimulator of IFN genes (STING) is central to production of type I IFNs in response to infection with DNA viruses and to presence of host DNA in the cytosol. Excessive release of type I IFNs through STING-dependent mechanisms has emerged as a central driver of several interferonopathies, including systemic lupus erythematosus (SLE), Aicardi-Goutières syndrome (AGS), and stimulator of IFN genes-associated vasculopathy with onset in infancy (SAVI). The involvement of STING in these diseases points to an unmet need for the development of agents that inhibit STING signaling. Here, we report that endogenously formed nitro-fatty acids can covalently modify STING by nitro-alkylation. These nitro-alkylations inhibit STING palmitoylation, STING signaling, and subsequently, the release of type I IFN in both human and murine cells. Furthermore, treatment with nitro-fatty acids was sufficient to inhibit production of type I IFN in fibroblasts derived from SAVI patients with a gain-of-function mutation in STING. In conclusion, we have identified nitro-fatty acids as endogenously formed inhibitors of STING signaling and propose for these lipids to be considered in the treatment of STING-dependent inflammatory diseases.


Assuntos
Ácidos Graxos/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 2/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Animais , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/metabolismo , Doenças Autoimunes do Sistema Nervoso/patologia , Herpes Simples/genética , Herpes Simples/patologia , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Lipoilação , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/metabolismo , Malformações do Sistema Nervoso/patologia , Células RAW 264.7
4.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187070

RESUMO

The retinoid X receptor (RXR) is a ligand-sensing transcription factor acting mainly as a universal heterodimer partner for other nuclear receptors. Despite presenting as a potential therapeutic target for cancer and neurodegeneration, adverse effects typically observed for RXR agonists, likely due to the lack of isoform selectivity, limit chemotherapeutic application of currently available RXR ligands. The three human RXR isoforms exhibit different expression patterns; however, they share high sequence similarity, presenting a major obstacle toward the development of subtype-selective ligands. Here, we report the discovery of the saturated fatty acid, palmitic acid, as an RXR ligand and disclose a uniform set of crystal structures of all three RXR isoforms in an active conformation induced by palmitic acid. A structural comparison revealed subtle differences among the RXR subtypes. We also observed an ability of palmitic acid as well as myristic acid and stearic acid to induce recruitment of steroid receptor co-activator 1 to the RXR ligand-binding domain with low micromolar potencies. With the high, millimolar endogenous concentrations of these highly abundant lipids, our results suggest their potential involvement in RXR signaling.


Assuntos
Ácido Palmítico/metabolismo , Isoformas de Proteínas/metabolismo , Receptores X de Retinoides/metabolismo , Linhagem Celular , Dimerização , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Ligantes , Ácido Mirístico/metabolismo , Coativador 1 de Receptor Nuclear/metabolismo , Transdução de Sinais/fisiologia , Ácidos Esteáricos/metabolismo
5.
Rapid Commun Mass Spectrom ; 33 Suppl 1: 40-49, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29964304

RESUMO

RATIONALE: Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of covalent 5-lipoxygenase inhibitors is challenging due to unknown amino acid specificity and low posttranslational modification (PTM)-identification rates. The analysis of the amino-acid specificity and of the characteristic fragmentation of chemically modified peptides is considered to improve knowledge for the analysis of chemically modified peptides and proteins by MALDI-MS. METHODS: Various compounds were used to investigate the modification of synthetic peptides carrying reactive amino acid residues. Mass spectra were recorded using a MALDI-LTQ Orbitrap XL for high-resolution mass spectrometry and ion trap MALDI-MS2 . UV-Vis-based reduction and radical scavenging analysis was conducted. The on-plate digestion method described by Rühl et al was utilized for modification-site analysis at 5-lipoxygenase. RESULTS: The analysis of amino-acid-specific reactivity revealed the reactivity of quinones towards cysteine residues and the potential occurrence of a subsequent oxidative process was observed by an UV-Vis-based reduction assay. MALDI collision-induced dissociation tandem mass spectrometry (CID-MS2 ) indicated a prominent fragmentation mechanism of modified cysteine and histidine residues. Fragmentation included highly abundant neutral-loss signals which could be used to identify new modifications induced by chemical modifiers at the cysteine-159 residue of 5-lipoxygenase. CONCLUSIONS: Specificity and fragmentation analysis provides crucial information for the analysis of chemically modified cysteines and histidines by MALDI-MS. Elucidation of binding sites by MALDI-MS has been significantly improved using an easy-to-run peptide assay and gives background information for the analysis in the case of chemically modified 5-lipoxygenase.


Assuntos
Peptídeos/química , Proteínas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Sítios de Ligação , Cisteína/análise , Cisteína/química , Cisteína/metabolismo , Histidina/análise , Histidina/química , Histidina/metabolismo , Lipoxigenase , Inibidores de Lipoxigenase , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Peptídeos/análise , Peptídeos/metabolismo , Ligação Proteica , Proteínas/análise , Proteínas/metabolismo , Quinonas/química
6.
J Clin Apher ; 30(4): 217-23, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25346275

RESUMO

BACKGROUND: In patients suffering from dilated cardiomyopathy (DCM), immunoadsorption with subsequent IgG substitution (IA/IgG) leads to an acute and prolonged improvement of hemodynamics and heart failure symptoms. However, some patients receiving IA/IgG experience recurrence of heart failure after an initial benefit. The aim of this study was to investigate whether a second IA/IgG treatment episode improves left ventricular systolic function and further mitigates heart failure symptoms in these patients. METHODS: We retrospectively analyzed 15 DCM patients who experienced a significant improvement of LVEF (≥ 5% absolute or ≥ 20% relative) and heart failure symptoms (≥ 1 NYHA functional class) but a subsequent deterioration (decline in LVEF ≥ 5% absolute or ≥ 20% relative and NYHA worsening ≥1 class) after the first IA/IgG. These patients underwent a second IA/IgG treatment 41.7 ± 27.4 months after the first cycle. Follow up data were acquired 3-6 months after both IA/IgG treatments. RESULTS: The first IA/IgG induced an improvement of LVEF from 33 ± 6.4% to 43.2 ± 7.9% (P < 0.001) and of mean NYHA functional class from 2.9 ± 0.26 to 1.8 ± 0.56 (P < 0.001). The second treatment was associated with a significant improvement in LVEF (from 29.7 ± 4.6% to 34.9 ± 8.3%, P = 0.013) and NYHA functional class (2.87 ± 0.64 to 2.33 ± 0.72; P = 0.02). This improvement was less pronounced compared to the first treatment with respect to both, LVEF (P = 0.09) and NYHA improvement (P = 0.04). CONCLUSION: In DCM patients, who experience a significant improvement of LVEF and heart failure symptoms after IA/IgG but a subsequent relapse during follow up, repeated IA/IgG may be considered.


Assuntos
Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/terapia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/terapia , Imunoglobulina G/química , Idoso , Biópsia , Cardiomiopatia Dilatada/imunologia , Ecocardiografia , Ergometria , Teste de Esforço , Feminino , Insuficiência Cardíaca/imunologia , Testes de Função Cardíaca , Hemodinâmica , Humanos , Imunoglobulina G/imunologia , Técnicas de Imunoadsorção , Masculino , Pessoa de Meia-Idade , Recidiva , Estudos Retrospectivos , Espirometria , Volume Sistólico , Fatores de Tempo , Função Ventricular Esquerda
7.
Int J Technol Assess Health Care ; 31(4): 214-22, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26585440

RESUMO

BACKGROUND: Availability of real-time electronic healthcare data provides new opportunities for rapid-cycle evaluation (RCE) of health technologies, including healthcare delivery and payment programs. We aim to align decision-making processes with stages of RCE to optimize the usefulness and impact of rapid results. Rational decisions about program adoption depend on program effect size in relation to externalities, including implementation cost, sustainability, and likelihood of broad adoption. METHODS: Drawing on case studies and experience from drug safety monitoring, we examine how decision makers have used scientific evidence on complex interventions in the past. We clarify how RCE alters the nature of policy decisions; develop the RAPID framework for synchronizing decision-maker activities with stages of RCE; and provide guidelines on evidence thresholds for incremental decision-making. RESULTS: In contrast to traditional evaluations, RCE provides early evidence on effectiveness and facilitates a stepped approach to decision making in expectation of future regularly updated evidence. RCE allows for identification of trends in adjusted effect size. It supports adapting a program in midstream in response to interim findings, or adapting the evaluation strategy to identify true improvements earlier. The 5-step RAPID approach that utilizes the cumulating evidence of program effectiveness over time could increase policy-makers' confidence in expediting decisions. CONCLUSIONS: RCE enables a step-wise approach to HTA decision-making, based on gradually emerging evidence, reducing delays in decision-making processes after traditional one-time evaluations.


Assuntos
Tomada de Decisões , Avaliação da Tecnologia Biomédica/métodos , Automação , Humanos , Segurança do Paciente , Medicamentos sob Prescrição , Fatores de Tempo
8.
J Pharm Biomed Anal ; 245: 116180, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703748

RESUMO

Oligonucleotides have emerged as important therapeutic options for inherited diseases. In recent years, RNA therapeutics, especially mRNA, have been pushed to the market. Analytical methods for these molecules have been published extensively in the last few years. Notably, mass spectrometry has proven as a state-of-the-art quality control method. For RNA based therapeutics, numerous methods are available, while DNA therapeutics lack of suitable MS-based methods when it comes to molecules exceeding approximately 60 nucleotides. We present a method which combines the use of common restriction enzymes and short enzyme-directing oligonucleotides to generate DNA digestion products with the advantages of high-resolution tandem mass spectrometry. The instrumentation includes ion pair reverse phase chromatography coupled to a time-of-flight mass spectrometer with a collision induced dissociation (CID) for sequence analysis. Utilizing this approach, we increased the sequence coverage from 23.3% for a direct CID-MS/MS experiment of a 100 nucleotide DNA molecule to 100% sequence coverage using the restriction enzyme mediated approach presented in this work. This approach is suitable for research and development and quality control purposes in a regulated environment, which makes it a versatile tool for drug development.


Assuntos
Enzimas de Restrição do DNA , DNA , Oligonucleotídeos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , DNA/química , DNA/genética , Enzimas de Restrição do DNA/metabolismo , Oligonucleotídeos/química , Nucleotídeos/análise , Nucleotídeos/química , Cromatografia de Fase Reversa/métodos , Controle de Qualidade , Análise de Sequência de DNA/métodos
9.
Biomedicines ; 11(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37509564

RESUMO

Patients with polycythemia vera (PV) are at significant risk of thromboembolic events (TE). The PV-AIM study used the Optum® de-identified Electronic Health Record dataset and machine learning to identify markers of TE in a real-world population. Data for 82,960 patients with PV were extracted: 3852 patients were treated with hydroxyurea (HU) only, while 130 patients were treated with HU and then changed to ruxolitinib (HU-ruxolitinib). For HU-alone patients, the annualized incidence rates (IR; per 100 patients) decreased from 8.7 (before HU) to 5.6 (during HU) but increased markedly to 10.5 (continuing HU). Whereas for HU-ruxolitinib patients, the IR decreased from 10.8 (before HU) to 8.4 (during HU) and was maintained at 8.3 (after switching to ruxolitinib). To better understand markers associated with TE risk, we built a machine-learning model for HU-alone patients and validated it using an independent dataset. The model identified lymphocyte percentage (LYP), neutrophil percentage (NEP), and red cell distribution width (RDW) as key markers of TE risk, and optimal thresholds for these markers were established, from which a decision tree was derived. Using these widely used laboratory markers, the decision tree could be used to identify patients at high risk for TE, facilitate treatment decisions, and optimize patient management.

10.
Future Healthc J ; 8(3): e695-e698, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34888469

RESUMO

Healthcare costs have been dramatically rising in developed economies worldwide. A key driver of cost increases has been high-cost drugs. The current model of reimbursement is not configured for drugs with uncertain outcomes. Future reimbursement will require better allocation of available healthcare system funds. Technological advancements have opened the door to a new type of outcomes-based reimbursement, enabling value exchange between payers and pharmaceutical companies, which we term precision reimbursement. Precision reimbursement extends beyond value-based contracts, with decisions at individual rather than aggregate level. For precision reimbursement to be adopted, there are data, computation and infrastructure requirements. All stakeholders benefit in moving to precision reimbursement for optimal resource allocation, risk sharing and, ultimately, improved outcomes. There are implementation challenges including cost, change management, information governance and development of surrogate markers. The overarching trend in medicine is toward personalised interventions, with precision reimbursement as the logical consequence.

11.
Mol Phylogenet Evol ; 54(2): 664-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19660561

RESUMO

Compensatory base changes (CBCs) in the ribosomal RNA (rRNA) internal transcribed spacer 2 (ITS2) secondary structures have been used to successfully verify the taxonomy of closely related species. CBCs have never been used to distinguish morphologically indistinct species. Under the hypothesis that CBCs will differentiate species in higher eukaryotes, novel software for CBC analysis was applied to morphologically indistinguishable insect species in the genus Altica. The analysis was species-specific for sympatric Altica beetles collected across four ecoregions and concordant with scanning electron microscopy data. This research shows that mining for CBCs in ITS2 rRNA secondary structures is an effective method for eukaryotic taxon analysis.


Assuntos
Besouros/genética , Filogenia , RNA Ribossômico/genética , Análise de Sequência de DNA/métodos , Animais , Besouros/anatomia & histologia , Besouros/classificação , Biologia Computacional , DNA Espaçador Ribossômico/genética , Microscopia Eletrônica de Varredura , Modelos Moleculares , Conformação de Ácido Nucleico , Alinhamento de Sequência , Software , Especificidade da Espécie
12.
Nat Chem ; 12(8): 755-763, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32632186

RESUMO

Type II polyketide synthases (PKSs) are multi-enzyme complexes that produce secondary metabolites of medical relevance. Chemical backbones of such polyketides are produced by minimal PKS systems that consist of a malonyl transacylase, an acyl carrier protein and an α/ß heterodimeric ketosynthase. Here, we present X-ray structures of all ternary complexes that constitute the minimal PKS system for anthraquinone biosynthesis in Photorhabdus luminescens. In addition, we characterize this invariable core using molecular simulations, mutagenesis experiments and functional assays. We show that malonylation of the acyl carrier protein is accompanied by major structural rearrangements in the transacylase. Principles of an ongoing chain elongation are derived from the ternary complex with a hexaketide covalently linking the heterodimeric ketosynthase with the acyl carrier protein. Our results for the minimal PKS system provide mechanistic understanding of PKSs and a fundamental basis for engineering PKS pathways for future applications.


Assuntos
Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Proteína de Transporte de Acila/metabolismo , Antraquinonas/química , Antraquinonas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Teoria da Densidade Funcional , Malonatos/metabolismo , Simulação de Dinâmica Molecular , Família Multigênica/genética , Mutagênese , Photorhabdus/enzimologia , Photorhabdus/metabolismo , Policetídeo Sintases/química , Policetídeo Sintases/genética , Policetídeos/química , Estrutura Quaternária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
13.
Cell Chem Biol ; 26(1): 60-70.e4, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30415966

RESUMO

5-Lipoxygenase (5-LO) initiates the biosynthesis of pro-inflammatory leukotrienes from arachidonic acid, which requires the nuclear membrane-bound 5-LO-activating protein (FLAP) for substrate transfer. Here, we identified human 5-LO as a molecular target of melleolides from honey mushroom (Armillaria mellea). Melleolides inhibit 5-LO via an α,ß-unsaturated aldehyde serving as Michael acceptor for surface cysteines at the substrate entrance that are revealed as molecular determinants for 5-LO activity. Experiments with 5-LO mutants, where select cysteines had been replaced by serine, indicated that the investigated melleolides suppress 5-LO product formation via two distinct modes of action: (1) by direct interference with 5-LO activity involving two or more of the cysteines 159, 300, 416, and 418, and (2) by preventing 5-LO/FLAP assemblies involving selectively Cys159 in 5-LO. Interestingly, replacement of Cys159 by serine prevented 5-LO/FLAP assemblies as well, implying Cys159 as determinant for 5-LO/FLAP complex formation at the nuclear membrane required for leukotriene biosynthesis.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Armillaria/química , Cisteína/metabolismo , Inibidores de Lipoxigenase/farmacologia , Sesquiterpenos/farmacologia , Células A549 , Relação Dose-Resposta a Droga , Humanos , Inibidores de Lipoxigenase/química , Estrutura Molecular , Sesquiterpenos/química , Relação Estrutura-Atividade
14.
J Mass Spectrom ; 53(8): 675-679, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29787639

RESUMO

We show an easy and fast method for improved detection of lipophilic peptides with MALDI-MS utilizing the nonionic detergents n-octylglucoside and n-dodecylmaltoside (laurylmaltoside). Investigations comprised on-plate digestion of proteins with trypsin, detergent effects on the protease trypsin, and the changes in MALDI matrix crystallization. Investigations also exhibited a higher tryptic activity in trypsin activity assay of 139% when using laurylmaltoside as supplement. Crystallization changed toward a more homogeneous crystal distribution and especially trypsinized insulin spectra recorded with MALDI-MS showed improved detectability of lipophilic peptides.


Assuntos
Glucosídeos/química , Lipopeptídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Tripsina/química , Cristalização , Ativação Enzimática , Oxirredução , Proteólise
15.
Biochem Pharmacol ; 155: 48-60, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29909078

RESUMO

Nitro-fatty acids (NFAs) are endogenously occurring lipid mediators exerting strong anti-inflammatory effects and acting as anti-oxidants in a number of animal models of inflammation. These NFA effects are mediated by targeting important regulatory proteins involved in inflammatory processes, such as 5-lipoxygenase, soluble epoxide hydrolase, or NF-κB. In the present study, we investigated the anti-tumorigenic effects of NFAs on colorectal cancer (CRC) cells in cell culture-based experiments and in a murine xenograft model of human CRC. We could show that 9-NOA suppresses the viability of CRC cells (HCT-116 and HT-29) by inducing a caspase-dependent apoptosis via the intrinsic apoptotic pathway. Co-treatment with the pan-caspase inhibitor Q-VD-OPH counteracted the NFA-mediated apoptosis in both cell lines. Furthermore, NFAs affected the cell cycle transition and reduced the oxygen consumption rate (OCR) immediately. On the contrary to their well-known anti-oxidative properties, NFAs mediated the generation of mitochondrial oxidative stress in human CRC cells. Additionally, similar to the cytostatic drug mitomycin, 9-NOA significantly reduced tumor growth in a murine xenograft model of human colorectal cancer. In contrast to the established cytostatic drug, 9-NOA treatment was well tolerated by mice. This study delivers a novel mechanistic approach for nitro-fatty acid-induced inhibition of CRC cell growth by targeting mitochondrial functions such as the mitochondrial membrane potential and mitochondrial respiration. We suggest these naturally occurring lipid mediators as a new class of well tolerated chemotherapeutic drug candidates for treatment of CRC or potentially other inflammation-driven cancer types.


Assuntos
Anti-Inflamatórios/metabolismo , Apoptose/fisiologia , Proliferação de Células/fisiologia , Neoplasias Colorretais/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ácidos Graxos/farmacologia , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos
16.
Biochem Pharmacol ; 123: 52-62, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27671344

RESUMO

5-Lipoxygenase (5-LO, EC1.13.11.34) has been implicated in the pathogenesis of inflammatory and immune diseases. Recently, aminothiazole comprising inhibitors have been discovered for this valuable target. Yet, the molecular mode of action of this class of substances is only poorly understood. Here, we present the detailed molecular mechanism of action of the compound class and the in vitro pharmacological profile of two lead compounds ST-1853 and ST-1906. Mechanistic studies with recombinant proteins as well as intact cell assays enabled us to define this class as a novel type of 5-LO inhibitors with unique characteristics. The parent compounds herein presented a certain reactivity concerning oxidation and thiol binding: Unsubstituted aminophenols bound covalently to C159 and C418 of human 5-LO. Yet, dimethyl substitution of the aminophenol prevented this reactivity and slowed down phase II metabolism. Both ST-1853 and ST-1906 confirmed their lead likeness by retaining their high potency in physiologically relevant 5-LO activity assays, high metabolic stability, high specificity and non-cytotoxicity.


Assuntos
Inibidores de Lipoxigenase/farmacologia , Tiazóis/farmacologia , Células Cultivadas , Humanos , Inibidores de Lipoxigenase/farmacocinética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tiazóis/farmacocinética
17.
Biochem Pharmacol ; 125: 55-74, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27823964

RESUMO

Recently, we published that nitro-fatty acids (NFA) are potent electrophilic molecules which inhibit 5-lipoxygenase (5-LO) by interacting catalytically with cysteine residues next to a substrate entry channel. The electrophilicity is derived from an intramolecular Michael acceptor moiety consisting of an electron-withdrawing group in close proximity to a double bond. The potential of the Michael acceptor moiety to interact with functionally relevant cysteines of proteins potentially renders them effective and sustained enzyme activity modulators. We screened a large library of naturally derived and synthetic electrophilic compounds to investigate whether other types of Michael acceptor containing drugs suppress 5-LO enzyme activity. The activity was measured by assessing the effect on the 5-LO product formation of intact human polymorphonuclear leukocytes. We demonstrated that a number of structurally different compounds were suppressive in the activity assays and showed that Michael acceptors of the quinone and nitro-alkene group produced the strongest inhibition of 5-LO product formation. Reactivity with the catalytically relevant cysteines 416 and 418 was confirmed using mutated recombinant 5-LO and mass spectrometric analysis (MALDI-MS). In the present study, we show for the first time that a number of well-recognized naturally occurring or synthetic anti-inflammatory compounds carrying a Michael acceptor, such as thymoquinone (TQ), the paracetamol metabolite NAPQI, the 5-LO inhibitor AA-861, and bardoxolone methyl (also known as RTA 402 or CDDO-methyl ester) are direct covalent 5-LO enzyme inhibitors that target the catalytically relevant cysteines 416 and 418.


Assuntos
Cisteína/efeitos dos fármacos , Inibidores de Lipoxigenase/farmacologia , Humanos , Concentração Inibidora 50 , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA