Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 34(6): 697-703, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28828891

RESUMO

In this work, a novel magnetic resonance (MR)-compatible microwave antenna was designed and validated in a small animal superficial hyperthermia applicator. The antenna operates at 2.45 GHz and matching is made robust against production and setup inaccuracies. To validate our theoretical concept, a prototype of the applicator was manufactured and tested for its properties concerning input reflection, sensitivity for setup inaccuracies, environment temperature stability and MR-compatibility. The experiments show that the applicator indeed fulfils the requirements for MR-guided hyperthermia investigation in small animals: it creates a small heating focus (<1 cm3), has a stable and reliable performance (S11< -15 dB) for all working conditions and is MR-compatible.


Assuntos
Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Camundongos
2.
Micromachines (Basel) ; 12(4)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917720

RESUMO

Brain-on-chip (BoC) models are tools for reproducing the native microenvironment of neurons, in order to study the (patho)physiology and drug-response of the brain. Recent developments in BoC techniques focus on steering neurons in their activity via microfabrication and via computer-steered feedback mechanisms. These cultures are often studied through calcium imaging (CI), a method for visualizing the cellular activity through infusing cells with a fluorescent dye. CAlciumImagingAnalyser 2.0 (CALIMA 2.0) is an updated version of a software tool that detects and analyzes fluorescent signals and correlates cellular activity to identify possible network formation in BoC cultures. Using three previous published data sets, it was demonstrated that CALIMA 2.0 can analyze large data sets of CI-data and interpret cell activity to help study the activity and maturity of BoC cultures. Last, an analysis of the processing speed shows that CALIMA 2.0 is sufficiently fast to process data sets with an acquisition rate up to 5 Hz in real-time on a medium-performance computer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA