Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 22(1): 254, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072930

RESUMO

BACKGROUND: It is increasingly recognized that conventional food production systems are not able to meet the globally increasing protein needs, resulting in overexploitation and depletion of resources, and environmental degradation. In this context, microbial biomass has emerged as a promising sustainable protein alternative. Nevertheless, often no consideration is given on the fact that the cultivation conditions affect the composition of microbial cells, and hence their quality and nutritional value. Apart from the properties and nutritional quality of the produced microbial food (ingredient), this can also impact its sustainability. To qualitatively assess these aspects, here, we investigated the link between substrate availability, growth rate, cell composition and size of Cupriavidus necator and Komagataella phaffii. RESULTS: Biomass with decreased nucleic acid and increased protein content was produced at low growth rates. Conversely, high rates resulted in larger cells, which could enable more efficient biomass harvesting. The proteome allocation varied across the different growth rates, with more ribosomal proteins at higher rates, which could potentially affect the techno-functional properties of the biomass. Considering the distinct amino acid profiles established for the different cellular components, variations in their abundance impacts the product quality leading to higher cysteine and phenylalanine content at low growth rates. Therefore, we hint that costly external amino acid supplementations that are often required to meet the nutritional needs could be avoided by carefully applying conditions that enable targeted growth rates. CONCLUSION: In summary, we demonstrate tradeoffs between nutritional quality and production rate, and we discuss the microbial biomass properties that vary according to the growth conditions.


Assuntos
Aminoácidos , Proteoma , Biomassa , Cisteína , Tamanho Celular
2.
J Environ Manage ; 345: 118500, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37542810

RESUMO

Microalgae can play a key role in the bioeconomy, particularly in combination with the valorisation of waste streams as cultivation media. Urine is an example of a widely available nutrient-rich waste stream, and alkaline stabilization and subsequent full nitrification in a bioreactor yields a stable nitrate-rich solution. In this study, such nitrified urine served as a culture medium for the edible microalga Limnospira indica. In batch cultivation, nitrified urine without additional supplements yielded a lower biomass concentration, nutrient uptake and protein content compared to modified Zarrouk medium, as standard medium. To enhance the nitrogen uptake efficiency and biomass production, nitrified urine was supplemented with potentially limiting elements. Limited amounts of phosphorus (36 mg L-1), magnesium (7.9 mg L-1), calcium (12.2 mg L-1), iron (2.0 mg L-1) and EDTA (88.5 mg Na2-EDTA.2H2O L-1) rendered the nitrified urine matrix as effective as modified Zarrouk medium in terms of biomass production (OD750 of 1.2), nutrient uptake (130 mg N L-1) and protein yield (47%) in batch culture. Urine precipitates formed by alkalinisation could in principle supply enough phosphorus, calcium and magnesium, requiring only external addition of iron, EDTA and inorganic carbon. Subsequently, the suitability of supplemented nitrified urine as a culture medium was confirmed in continuous Limnospira cultivation in a CSTR photobioreactor. This qualifies nitrified urine as a valuable and sustainable microalgae growth medium, thereby creating novel nutrient loops on Earth and in Space, i.e., in regenerative life support systems for human deep-space missions.


Assuntos
Microalgas , Humanos , Microalgas/metabolismo , Cálcio/metabolismo , Ácido Edético/metabolismo , Magnésio , Nutrientes , Fotobiorreatores , Fósforo/metabolismo , Suplementos Nutricionais , Biomassa , Nitrogênio/metabolismo
3.
J Environ Sci (China) ; 128: 203-212, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36801035

RESUMO

Biogenic palladium nanoparticles (bio-Pd NPs) are used for the reductive transformation and/or dehalogenation of persistent micropollutants. In this work, H2 (electron donor) was produced in situ by an electrochemical cell, permitting steered production of differently sized bio-Pd NPs. The catalytic activity was first assessed by the degradation of methyl orange. The NPs showing the highest catalytic activity were selected for the removal of micropollutants from secondary treated municipal wastewater. The synthesis at different H2 flow rates (0.310 L/hr or 0.646 L/hr) influenced the bio-Pd NPs size. The NPs produced over 6 hr at a low H2 flow rate had a larger size (D50 = 39.0 nm) than those produced in 3 hr at a high H2 flow rate (D50 = 23.2 nm). Removal of 92.1% and 44.3% of methyl orange was obtained after 30 min for the NPs with sizes of 39.0 nm and 23.2 nm, respectively. Bio-Pd NPs of 39.0 nm were used to treat micropollutants present in secondary treated municipal wastewater at concentrations ranging from µg/L to ng/L. Effective removal of 8 compounds was observed: ibuprofen (69.5%) < sulfamethoxazole (80.6%) < naproxen (81.4%) < furosemide (89.7%) < citalopram (91.7%) < diclofenac (91.9%) < atorvastatin (> 94.3%) < lorazepam (97.2%). Removal of fluorinated antibiotics occurred at > 90% efficiency. Overall, these data indicate that the size, and thus the catalytic activity of the NPs can be steered and that the removal of challenging micropollutants at environmentally relevant concentrations can be achieved through the use of bio-Pd NPs.


Assuntos
Nanopartículas Metálicas , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Paládio/química , Poluentes Químicos da Água/metabolismo
4.
Biotechnol Bioeng ; 119(7): 1792-1807, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35312065

RESUMO

Fermentation at elevated hydrostatic pressure is a novel strategy targeting product selectivity. However, the role of inoculum history and cross-resistance, that is, acquired tolerance from incubation under distinctive environmental stress, remains unclear in high-pressure operation. In our here presented work, we studied fermentation and microbial community responses of halotolerant marine sediment inoculum (MSI) and anaerobic digester inoculum (ADI), pre-incubated in serum bottles at different temperatures and subsequently exposed to mild hydrostatic pressure (MHP; < 10 MPa) in stainless steel reactors. Results showed that MHP effects on microbial growth, activity, and community structure were strongly temperature-dependent. At moderate temperature (20°C), biomass yield and fermentation were not limited by MHP; suggesting a cross-resistance effect from incubation temperature and halotolerance. Low temperatures (10°C) and MHP imposed kinetic and bioenergetic limitations, constraining growth and product formation. Fermentation remained favorable in MSI at 28°C and ADI at 37°C, despite reduced biomass yield resulting from maintenance and decay proportionally increasing with temperature. Microbial community structure was modified by temperature during the enrichment, and slight differences observed after MHP-exposure did not compromise functionality. Results showed that the relation incubation temperature-halotolerance proved to be a modifier of microbial responses to MHP and could be potentially exploited in fermentations to modulate product/biomass ratio.


Assuntos
Microbiota , Fermentação , Sedimentos Geológicos , Pressão Hidrostática , Temperatura
5.
Environ Sci Technol ; 55(22): 15371-15379, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34727498

RESUMO

Nitrate contamination is a common problem in groundwater around the world. Nitrate can be cathodically reduced in bioelectrochemical systems using autotrophic denitrifiers with low energy investment and without chemical addition. Successful denitrification was demonstrated in previous studies in both microbial fuel cells and microbial electrolysis cells (MECs) with continuous current flow, whereas the impact of intermittent current supply (e.g., in a fluidized-bed system) on denitrification and particularly the electron-storing capacity of the denitrifying electroactive biofilms (EABs) on the cathodes have not been studied in depth. In this study, two continuously fed MECs were operated in parallel under continuous and periodic polarization modes over 280 days, respectively. Under continuous polarization, the maximum denitrification rate reached 233 g NO3--N/m3/d with 98% nitrate removal (0.6 mg NO3--N/L in the effluent) with negligible intermediate production, while under a 30 s open-circuit/30 s polarization mode, 86% of nitrate was removed at a maximum rate of 205 g NO3--N/m3/d (4.5 mg NO3--N/L in the effluent) with higher N2O production (6.6-9.3 mg N/L in the effluent). Conversely, periodic polarization could be an interesting approach in other bioelectrochemical processes if the generation of chemical intermediates (partially reduced or oxidized) should be favored. Similar microbial communities dominated byGallionellaceaewere found in both MECs; however, swapping the polarization modes and the electrochemical analyses suggested that the periodically polarized EABs probably developed a higher ability for electron storage and transfer, which supported the direct electron transfer pathway in discontinuous operation or fluidized biocathodes.


Assuntos
Fontes de Energia Bioelétrica , Água Subterrânea , Processos Autotróficos , Desnitrificação , Nitratos
6.
Environ Sci Technol ; 55(12): 8287-8298, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34086451

RESUMO

Urine is a valuable resource for nutrient recovery. Stabilization is, however, recommended to prevent urea hydrolysis and the associated risk for ammonia volatilization, uncontrolled precipitation, and malodor. This can be achieved by alkalinization and subsequent biological conversion of urea and ammonia into nitrate (nitrification) and organics into CO2. Yet, without pH control, the extent of nitrification is limited as a result of insufficient alkalinity. This study explored the feasibility of an integrated electrochemical cell to obtain on-demand hydroxide production through water reduction at the cathode, compensating for the acidification caused by nitritation, thereby enabling full nitrification. To deal with the inherent variability of the urine influent composition and bioprocess, the electrochemical cell was steered via a controller, modulating the current based on the pH in the bioreactor. This provided a reliable and innovative alternative to base addition, enabling full nitrification while avoiding the use of chemicals, the logistics associated with base storage and dosing, and the associated increase in salinity. Moreover, the electrochemical cell could be used as an in situ extraction and concentration technology, yielding an acidic concentrated nitrate-rich stream. The make-up of the end product could be tailored by tweaking the process configuration, offering versatility for applications on Earth and in space.


Assuntos
Nitratos , Nitrificação , Amônia , Reatores Biológicos , Concentração de Íons de Hidrogênio , Nitrogênio
7.
Appl Environ Microbiol ; 86(4)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31811031

RESUMO

Microorganisms in wastewater treatment plants (WWTPs) play a key role in the removal of pollutants from municipal and industrial wastewaters. A recent study estimated that activated sludge from global municipal WWTPs harbors 1 × 109 to 2 × 109 microbial species, the majority of which have not yet been cultivated, and 28 core taxa were identified as "most-wanted" ones (L. Wu, D. Ning, B. Zhang, Y. Li, et al., Nat Microbiol 4:1183-1195, 2019, https://doi.org/10.1038/s41564-019-0426-5). Cultivation and characterization of the "most-wanted" core bacteria are critical to understand their genetic, physiological, phylogenetic, and ecological traits, as well as to improve the performance of WWTPs. In this study, we isolated a bacterial strain, designated SJ-1, that represents a novel cluster within Betaproteobacteria and corresponds to OTU_16 within the 28 core taxa in the "most-wanted" list. Strain SJ-1 was identified and nominated as Casimicrobium huifangae gen. nov., sp. nov., of a novel family, Casimicrobiaceae. C. huifangae is ubiquitously distributed and is metabolically versatile. In addition to mineralizing various carbon sources (including carbohydrates, aromatic compounds, and short-chain fatty acids), C. huifangae is capable of nitrate reduction and phosphorus accumulation. The population of C. huifangae accounted for more than 1% of the bacterial population of the activated sludge microbiome from the Qinghe WWTP, which showed seasonal dynamic changes. Cooccurrence analysis suggested that C. huifangae was an important module hub in the bacterial network of Qinghe WWTP.IMPORTANCE The activated sludge process is the most widely applied biotechnology and is one of the best ecosystems to address microbial ecological principles. Yet, the cultivation of core bacteria and the exploration of their physiology and ecology are limited. In this study, the core and novel bacterial taxon C. huifangae was cultivated and characterized. This study revealed that C. huifangae functioned as an important module hub in the activated sludge microbiome, and it potentially plays an important role in municipal wastewater treatment plants.


Assuntos
Betaproteobacteria/classificação , Betaproteobacteria/fisiologia , Esgotos/microbiologia , Betaproteobacteria/genética , Microbiota , Filogenia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
8.
Environ Sci Technol ; 54(19): 12583-12592, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32845128

RESUMO

Simultaneous digestion and in situ biogas upgrading in high-pressure bioreactors will result in elevated CO2 partial pressure (pCO2). With the concomitant increase in dissolved CO2, microbial conversion processes may be affected beyond the impact of increased acidity. Elevated pCO2 was reported to affect the kinetics and thermodynamics of biochemical conversions because CO2 is an intermediate and end-product of the digestion process and modifies the carbonate equilibrium. Our results showed that increasing pCO2 from 0.3 to 8 bar in lab-scale batch reactors decreased the maximum substrate utilization rate (rsmax) for both syntrophic propionate and butyrate oxidation. These kinetic limitations are linked to an increased overall Gibbs free energy change (ΔGOverall) and a potential biochemical energy redistribution among syntrophic partners, which showed interdependence with hydrogen partial pressure (pH2). The bioenergetics analysis identified a moderate, direct impact of elevated pCO2 on propionate oxidation and a pH-mediated effect on butyrate oxidation. These constraints, combined with physiological limitations on growth exerted by increased acidity and inhibition due to higher concentrations of undissociated volatile fatty acids, help to explain the observed phenomena. Overall, this investigation sheds light on the role of elevated pCO2 in delicate biochemical syntrophic conversions by connecting kinetic, bioenergetic, and physiological effects.


Assuntos
Butiratos , Propionatos , Anaerobiose , Reatores Biológicos , Dióxido de Carbono , Metabolismo Energético , Metano , Pressão Parcial
9.
Environ Sci Technol ; 54(6): 3618-3627, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32049503

RESUMO

Source separation of urine can enable nutrient recycling, facilitate wastewater management, and conserve water. Without stabilization of the urine, urea is quickly hydrolyzed into ammonia and (bi)carbonate, causing nutrient loss, clogging of collection systems, ammonia volatilization, and odor nuisance. In this study, electrochemically induced precipitation and stabilization of fresh urine was successfully demonstrated. By recirculating the urine over the cathodic compartment of an electrochemical cell, the pH was increased due to the production of hydroxyl ions at the cathode. The pH increased to 11-12, decreasing calcium and magnesium concentrations by >80%, and minimizing scaling and clogging during downstream processing. At pH 11, urine could be stabilized for one week, while an increase to pH 12 allowed urine storage without urea hydrolysis for >18 months. By a smart selection of membranes [anion exchange membrane (AEM) with a cation exchange membrane (CEM) or a bipolar membrane (BPM)], no chemical input was required in the electrochemical cell and an acidic stream was produced that can be used to periodically rinse the electrochemical cell and toilet. On-site electrochemical treatment, close to the toilet, is a promising new concept to minimize clogging in collection systems by forcing controlled precipitation and to inhibit urea hydrolysis during storage until further treatment in more centralized nutrient recovery plants.


Assuntos
Aparelho Sanitário , Águas Residuárias , Amônia , Precipitação Química , Hidrólise , Reciclagem , Urina
10.
Appl Microbiol Biotechnol ; 104(11): 5119-5131, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32248436

RESUMO

Isobutyrate (i-butyrate) is a versatile platform chemical, whose acid form is used as a precursor of plastic and emulsifier. It can be produced microbially either using genetically engineered organisms or via microbiomes, in the latter case starting from methanol and short-chain carboxylates. This opens the opportunity to produce i-butyrate from non-sterile feedstocks. Little is known on the ecology and process conditions leading to i-butyrate production. In this study, we steered i-butyrate production in a bioreactor fed with methanol and acetate under various conditions, achieving maximum i-butyrate productivity of 5.0 mM day-1, with a concurrent production of n-butyrate of 7.9 mM day-1. The production of i-butyrate was reversibly inhibited by methanogenic inhibitor 2-bromoethanesulfonate. The microbial community data revealed the co-dominance of two major OTUs during co-production of i-butyrate and n-butyrate in two distinctive phases throughout a period of 54 days and 28 days, respectively. The cross-comparison of product profile with microbial community composition suggests that the relative abundance of Clostridium sp. over Eubacterium sp. is correlated with i-butyrate productivity over n-butyrate productivity.


Assuntos
Butiratos/metabolismo , Clostridium/metabolismo , Eubacterium/metabolismo , Isobutiratos/metabolismo , Metanol/metabolismo , Microbiota , Reatores Biológicos , Clostridium/isolamento & purificação , Eubacterium/isolamento & purificação , Fermentação
11.
Environ Sci Technol ; 53(19): 11066-11079, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31483625

RESUMO

Throughout the 20th century, the prevailing approach toward nitrogen management in municipal wastewater treatment was to remove ammonium by transforming it into dinitrogen (N2) using biological processes such as conventional activated sludge. While this has been a very successful strategy for safeguarding human health and protecting aquatic ecosystems, the conversion of ammonium into its elemental form is incompatible with the developing circular economy of the 21st century. Equally important, the activated sludge process and other emerging ammonium removal pathways have several environmental and technological limitations. Here, we assess that the theoretical energy embedded in ammonium in domestic wastewater represents roughly 38-48% of the embedded chemical energy available in the whole of the discharged bodily waste. The current routes for ammonium removal not only neglect the energy embedded in ammonium, but they can also produce N2O, a very strong greenhouse gas, with such emissions comprising the equivalent of 14-26% of the overall carbon footprint of wastewater treatment plants. N2O emissions often exceed the carbon emissions related to the electricity consumption for the process requirements of WWTPs. Considering these limitations, there is a need to develop alternative ammonium management approaches that center around recovery of ammonium from domestic wastewater rather than deal with its "destruction" into elemental dinitrogen. Current ammonium recovery techniques are applicable only at orders of magnitude above domestic wastewater strength, and so new techniques based on physicochemical adsorption are of particular interest. A new pathway is proposed that allows for mainstream ammonium recovery from wastewater based on physicochemical adsorption through development of polymer-based adsorbents. Provided adequate adsorbents corresponding to characteristics outlined in this paper are designed and brought to industrial production, this adsorption-based approach opens perspectives for mainstream continuous adsorption coupled with side-stream recovery of ammonium with minimal chemical requirements. This proposed pathway can bring forward an effective resource-oriented approach to upgrade the fate of ammonium in urban water management without generating hidden externalized environmental costs.


Assuntos
Compostos de Amônio , Águas Residuárias , Ecossistema , Esgotos , Eliminação de Resíduos Líquidos
12.
Appl Environ Microbiol ; 84(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30054363

RESUMO

The involvement of Shewanella spp. in biocorrosion is often attributed to their Fe(III)-reducing properties, but they could also affect corrosion by using metallic iron as an electron donor. Previously, we isolated Shewanella strain 4t3-1-2LB from an acetogenic community enriched with Fe(0) as the sole electron donor. Here, we investigated its use of Fe(0) as an electron donor with fumarate as an electron acceptor and explored its corrosion-enhancing mechanism. Without Fe(0), strain 4t3-1-2LB fermented fumarate to succinate and CO2, as was shown by the reaction stoichiometry and pH. With Fe(0), strain 4t3-1-2LB completely reduced fumarate to succinate and increased the Fe(0) corrosion rate (7.0 ± 0.6)-fold in comparison to that of abiotic controls (based on the succinate-versus-abiotic hydrogen formation rate). Fumarate reduction by strain 4t3-1-2LB was, at least in part, supported by chemical hydrogen formation on Fe(0). Filter-sterilized spent medium increased the hydrogen generation rate only 1.5-fold, and thus extracellular hydrogenase enzymes appear to be insufficient to explain the enhanced corrosion rate. Electrochemical measurements suggested that strain 4t3-1-2LB did not excrete dissolved redox mediators. Exchanging the medium and scanning electron microscopy (SEM) imaging indicated that cells were attached to Fe(0). It is possible that strain 4t3-1-2LB used a direct mechanism to withdraw electrons from Fe(0) or favored chemical hydrogen formation on Fe(0) through maintaining low hydrogen concentrations. In coculture with an Acetobacterium strain, strain 4t3-1-2LB did not enhance acetogenesis from Fe(0). This work describes a strong corrosion enhancement by a Shewanella strain through its use of Fe(0) as an electron donor and provides insights into its corrosion-enhancing mechanism.IMPORTANCEShewanella spp. are frequently found on corroded metal structures. Their role in microbial influenced corrosion has been attributed mainly to their Fe(III)-reducing properties and, therefore, has been studied with the addition of an electron donor (lactate). Shewanella spp., however, can also use solid electron donors, such as cathodes and potentially Fe(0). In this work, we show that the electron acceptor fumarate supported the use of Fe(0) as the electron donor by Shewanella strain 4t3-1-2LB, which caused a (7.0 ± 0.6)-fold increase of the corrosion rate. The corrosion-enhancing mechanism likely involved cell surface-associated components in direct contact with the Fe(0) surface or maintenance of low hydrogen levels by attached cells, thereby favoring chemical hydrogen formation by Fe(0). This work sheds new light on the role of Shewanella spp. in biocorrosion, while the insights into the corrosion-enhancing mechanism contribute to the understanding of extracellular electron uptake processes.


Assuntos
Elétrons , Fumaratos/metabolismo , Ferro/metabolismo , Shewanella/metabolismo , Anaerobiose , Corrosão , Hidrogênio/análise , Hidrogênio/metabolismo , Oxirredução
13.
Environ Sci Technol ; 52(12): 6729-6742, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29772177

RESUMO

This critical review outlines a roadmap for the conversion of chemical oxygen demand (COD) contained in sewage to commodities based on three-steps: capture COD as sludge, ferment it to volatile fatty acids (VFA), and upgrade VFA to products. The article analyzes the state-of-the-art of this three-step approach and discusses the bottlenecks and challenges. The potential of this approach is illustrated for the European Union's 28 member states (EU-28) through Monte Carlo simulations. High-rate contact stabilization captures the highest amount of COD (66-86 g COD person equivalent-1 day-1 in 60% of the iterations). Combined with thermal hydrolysis, this would lead to a VFA-yield of 23-44 g COD person equivalent-1 day-1. Upgrading VFA generated by the EU-28 would allow, in 60% of the simulations, for a yearly production of 0.2-2.0 megatonnes of esters, 0.7-1.4 megatonnes of polyhydroxyalkanoates or 0.6-2.2 megatonnes of microbial protein substituting, respectively, 20-273%, 70-140% or 21-72% of their global counterparts (i.e., petrochemical-based esters, bioplastics or fishmeal). From these flows, we conclude that sewage has a strong potential as biorefinery feedstock, although research is needed to enhance capture, fermentation and upgrading efficiencies. These developments need to be supported by economic/environmental analyses and policies that incentivize a more sustainable management of our resources.


Assuntos
Poli-Hidroxialcanoatos , Esgotos , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Ácidos Graxos Voláteis , Fermentação , Hidrólise
14.
Environ Sci Technol ; 52(13): 7351-7359, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29923399

RESUMO

One of the main challenges for the 21st century is to balance the increasing demand for high-quality proteins while mitigating environmental impacts. In particular, cropland-based production of protein-rich animal feed for livestock rearing results in large-scale agricultural land-expansion, nitrogen pollution, and greenhouse gas emissions. Here we propose and analyze the long-term potential of alternative animal feed supply routes based on industrial production of microbial proteins (MP). Our analysis reveals that by 2050, MP can replace, depending on socio-economic development and MP production pathways, between 10-19% of conventional crop-based animal feed protein demand. As a result, global cropland area, global nitrogen losses from croplands and agricultural greenhouse gas emissions can be decreased by 6% (0-13%), 8% (-3-8%), and 7% (-6-9%), respectively. Interestingly, the technology to industrially produce MP at competitive costs is directly accessible for implementation and has the potential to cause a major structural change in the agro-food system.


Assuntos
Gases de Efeito Estufa , Gado , Agricultura , Ração Animal , Animais , Indústrias
15.
Environ Sci Technol ; 51(21): 12229-12234, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29020773

RESUMO

Recently, naturally occurring magnetite (Fe3O4) has emerged as a new material for sulfide control in sewers. However, unrefined magnetite could have high heavy metal contents (e.g., Cr, Zn, Ni, Sn, etc.) and the capacity to remove dissolved sulfide is reasonably limited due to relatively large particle sizes. To overcome the drawbacks of unrefined magnetite we used an electrochemical system with mild steel as sacrificial electrodes to in-situ generate high strength solutions of plate-like magnetite nanoparticles (MNP). MNP with a size range between 120 and 160 nm were electrochemically generated at 9.35 ± 0.28 g Fe3O4-Fe/L, resulting in a Coulombic efficiency (CE) for iron oxidation of 93.5 ± 2.8%. The produced MNP were found to effectively reduce sulfide levels in sewage from 12.7 ± 0.3 to 0.2 ± 0.0 mg S/L at a sulfide-to-MNP ratio of 0.26 g S/g Fe3O4-Fe. Subsequently, MNP were continuously generated with polarity switching at stable cell voltage for 31 days at 4.53 ± 0.35 g Fe3O4-Fe/L with a CE for iron oxidation of 92.4 ± 7.2%. The continuously produced MNP reduced sulfide at similar levels to around 0.2 mg S/L at a ratio of 0.28 g S/g Fe3O4-Fe.


Assuntos
Nanopartículas de Magnetita , Esgotos , Sulfetos , Óxido Ferroso-Férrico , Ferro
16.
Environ Sci Technol ; 51(3): 1654-1661, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28056169

RESUMO

Rare earth elements (REEs) have become increasingly important in modern day technologies. Unfortunately, their recycling is currently limited, and the conventional technologies for their extraction and purification are exceedingly energy and chemical intensive. New sustainable technologies for REE extraction from both primary and secondary resources would be extremely beneficial. This research investigated a two-stage recovery strategy focused on the recovery of neodymium (Nd) and lanthanum (La) from monazite ore that combines microbially based leaching (using citric acid and spent fungal supernatant) with electrochemical extraction. Pretreating the phosphate-based monazite rock (via roasting) dramatically increased the microbial REE leaching efficiency. Batch experiments demonstrated the effective and continued leaching of REEs by recycled citric acid, with up to 392 mg of Nd L-1 and 281 mg of La L-1 leached during seven consecutive 24 h cycles. Neodymium was further extracted in the catholyte of a three-compartment electrochemical system, with up to 880 mg of Nd L-1 achieved within 4 days (at 40 A m-2). Meanwhile, the radioactive element thorium and counterions phosphate and citrate were separated effectively from the REEs in the anolyte, favoring REE extraction and allowing sustainable reuse of the leaching agent. This study shows a promising technology that is suitable for primary ores and can further be optimized for secondary resources.


Assuntos
Metais Terras Raras/isolamento & purificação , Neodímio , Ácido Cítrico , Lantânio , Fosfatos , Reciclagem
17.
Environ Sci Technol ; 51(22): 13143-13150, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29112388

RESUMO

Conventional plant and meat protein production have low nitrogen usage efficiencies and high energy needs. Microbial protein (MP) is an alternative that offers higher nitrogen conversion efficiencies with low energy needs if nitrogen is recovered from a concentrated waste source such as source-separated urine. An electrochemical cell (EC) was optimized for ammonia recovery as NH3/H2 gas mixtures usable for MP production. Undiluted hydrolyzed urine was fed to the caustic-generating cathode compartment for ammonia stripping with redirection to the anode compartment for additional ammonium extraction. Using synthetic urine at 48 A m-2 the nitrogen removal efficiency reached 91.6 ± 2.1%. Tests with real urine at 20 A m-2, achieved 87.1 ± 6.0% and 68.4 ± 14.6% requiring 5.8 and 13.9 kWh kg N-1 recovered, via absorption in acid or MP medium, respectively. Energy savings through accompanying electrolytic H2 and O2 production were accounted for. Subsequently, MP was grown in fed-batch on MP medium with conventional NH4+ or urine-derived NH3 yielding 3.74 ± 1.79 and 4.44 ± 1.59 g CDW L-1, respectively. Dissolution of gaseous NH3 in MP medium maintained neutral pH in the MP reactor preventing caustic addition and thus salt accumulation. Urine-nitrogen could thus be valorized as MP via electrochemical ammonia recovery.


Assuntos
Amônia , Proteínas de Bactérias , Nitrogênio , Compostos de Amônio , Eletrodos , Eletrólise , Urina
18.
Environ Sci Technol ; 51(13): 7297-7303, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28534616

RESUMO

The Haber Bosch process is among the greatest inventions of the 20th century. It provided agriculture with reactive nitrogen and ultimately mankind with nourishment for a population of 7 billion people. However, the present agricultural practice of growing crops for animal production and human food constitutes a major threat to the sustainability of the planet in terms of reactive nitrogen pollution. In view of the shortage of directly feasible and cost-effective measures to avoid these planetary nitrogen burdens and the necessity to remediate this problem, we foresee the absolute need for and expect a revolution in the use of microbes as a source of protein. Bypassing land-based agriculture through direct use of Haber Bosch produced nitrogen for reactor-based production of microbial protein can be an inspiring concept for the production of high quality animal feed and even straightforward supply of proteinaceous products for human food, without significant nitrogen losses to the environment and without the need for genetic engineering to safeguard feed and food supply for the generations to come.


Assuntos
Agricultura , Bactérias , Reatores Biológicos , Abastecimento de Alimentos , Nitrogênio , Ração Animal , Animais , Produtos Agrícolas , Poluição Ambiental , Humanos
19.
Environ Microbiol ; 18(9): 3144-58, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27317862

RESUMO

Our understanding of the complex interconnected processes performed by microbial communities is hindered by our inability to culture the vast majority of microorganisms. Metagenomics provides a way to bypass this cultivation bottleneck and recent advances in this field now allow us to recover a growing number of genomes representing previously uncultured populations from increasingly complex environments. In this study, a temporal genome-centric metagenomic analysis was performed of lab-scale anaerobic digesters that host complex microbial communities fulfilling a series of interlinked metabolic processes to enable the conversion of cellulose to methane. In total, 101 population genomes that were moderate to near-complete were recovered based primarily on differential coverage binning. These populations span 19 phyla, represent mostly novel species and expand the genomic coverage of several rare phyla. Classification into functional guilds based on their metabolic potential revealed metabolic networks with a high level of functional redundancy as well as niche specialization, and allowed us to identify potential roles such as hydrolytic specialists for several rare, uncultured populations. Genome-centric analyses of complex microbial communities across diverse environments provide the key to understanding the phylogenetic and metabolic diversity of these interactive communities.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Genoma Bacteriano , Anaerobiose , Bactérias/classificação , Biodiversidade , Redes e Vias Metabólicas , Metagenômica , Metano/metabolismo , Filogenia
20.
Appl Environ Microbiol ; 82(1): 297-307, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26497463

RESUMO

Hydrocarbons released during oil spills are persistent in marine sediments due to the absence of suitable electron acceptors below the oxic zone. Here, we investigated an alternative bioremediation strategy to remove toluene, a model monoaromatic hydrocarbon, using a bioanode. Bioelectrochemical reactors were inoculated with sediment collected from a hydrocarbon-contaminated marine site, and anodes were polarized at 0 mV and +300 mV (versus an Ag/AgCl [3 M KCl] reference electrode). The degradation of toluene was directly linked to current generation of up to 301 mA m(-2) and 431 mA m(-2) for the bioanodes polarized at 0 mV and +300 mV, respectively. Peak currents decreased over time even after periodic spiking with toluene. The monitoring of sulfate concentrations during bioelectrochemical experiments suggested that sulfur metabolism was involved in toluene degradation at bioanodes. 16S rRNA gene-based Illumina sequencing of the bulk anolyte and anode samples revealed enrichment with electrocatalytically active microorganisms, toluene degraders, and sulfate-reducing microorganisms. Quantitative PCR targeting the α-subunit of the dissimilatory sulfite reductase (encoded by dsrA) and the α-subunit of the benzylsuccinate synthase (encoded by bssA) confirmed these findings. In particular, members of the family Desulfobulbaceae were enriched concomitantly with current production and toluene degradation. Based on these observations, we propose two mechanisms for bioelectrochemical toluene degradation: (i) direct electron transfer to the anode and/or (ii) sulfide-mediated electron transfer.


Assuntos
Biodegradação Ambiental , Deltaproteobacteria/metabolismo , Eletrodos , Sedimentos Geológicos/microbiologia , Enxofre/metabolismo , Tolueno/metabolismo , Anaerobiose , Carbono-Carbono Liases , Hidrocarbonetos/metabolismo , Sulfito de Hidrogênio Redutase/genética , Sulfito de Hidrogênio Redutase/metabolismo , Consórcios Microbianos/fisiologia , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sulfatos/metabolismo , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA