Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nucleic Acids Res ; 49(W1): W125-W130, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34133710

RESUMO

CRISPR-Cas systems are adaptive immune systems in prokaryotes, providing resistance against invading viruses and plasmids. The identification of CRISPR loci is currently a non-standardized, ambiguous process, requiring the manual combination of multiple tools, where existing tools detect only parts of the CRISPR-systems, and lack quality control, annotation and assessment capabilities of the detected CRISPR loci. Our CRISPRloci server provides the first resource for the prediction and assessment of all possible CRISPR loci. The server integrates a series of advanced Machine Learning tools within a seamless web interface featuring: (i) prediction of all CRISPR arrays in the correct orientation; (ii) definition of CRISPR leaders for each locus; and (iii) annotation of cas genes and their unambiguous classification. As a result, CRISPRloci is able to accurately determine the CRISPR array and associated information, such as: the Cas subtypes; cassette boundaries; accuracy of the repeat structure, orientation and leader sequence; virus-host interactions; self-targeting; as well as the annotation of cas genes, all of which have been missing from existing tools. This annotation is presented in an interactive interface, making it easy for scientists to gain an overview of the CRISPR system in their organism of interest. Predictions are also rendered in GFF format, enabling in-depth genome browser inspection. In summary, CRISPRloci constitutes a full suite for CRISPR-Cas system characterization that offers annotation quality previously available only after manual inspection.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Anotação de Sequência Molecular , Software , Proteínas Associadas a CRISPR/classificação , Proteínas Associadas a CRISPR/genética , Aprendizado de Máquina
2.
Nucleic Acids Res ; 48(W1): W287-W291, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32392303

RESUMO

RNA molecules fold into complex structures as a result of intramolecular interactions between their nucleotides. The function of many non-coding RNAs and some cis-regulatory elements of messenger RNAs highly depends on their fold. Single-nucleotide variants (SNVs) and other types of mutations can disrupt the native function of an RNA element by altering its base pairing pattern. Identifying the effect of a mutation on an RNA's structure is, therefore, a crucial step in evaluating the impact of mutations on the post-transcriptional regulation and function of RNAs within the cell. Even though a single nucleotide variation can have striking impacts on the structure formation, interpreting and comparing the impact usually needs expertise and meticulous efforts. Here, we present MutaRNA, a web server for visualization and interpretation of mutation-induced changes on the RNA structure in an intuitive and integrative fashion. To this end, probabilities of base pairing and position-wise unpaired probabilities of wildtype and mutated RNA sequences are computed and compared. Differential heatmap-like dot plot representations in combination with circular plots and arc diagrams help to identify local structure abberations, which are otherwise hidden in standard outputs. Eventually, MutaRNA provides a comprehensive and comparative overview of the mutation-induced changes in base pairing potentials and accessibility. The MutaRNA web server is freely available at http://rna.informatik.uni-freiburg.de/MutaRNA.


Assuntos
Mutação , RNA/química , Software , Regiões 5' não Traduzidas , Apoferritinas/genética , Pareamento de Bases , Genes ras , Ferro/metabolismo , Elementos de Resposta
3.
Bioinformatics ; 36(2): 462-469, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31350881

RESUMO

MOTIVATION: The folding dynamics of ribonucleic acids (RNAs) are typically studied via coarse-grained models of the underlying energy landscape to face the exponential growths of the RNA secondary structure space. Still, studies of exact folding kinetics based on gradient basin abstractions are currently limited to short sequence lengths due to vast memory requirements. In order to compute exact transition rates between gradient basins, state-of-the-art approaches apply global flooding schemes that require to memorize the whole structure space at once. pourRNA tackles this problem via local flooding techniques where memorization is limited to the structure ensembles of individual gradient basins. RESULTS: Compared to the only available tool for exact gradient basin-based macro-state transition rates (namely barriers), pourRNA computes the same exact transition rates up to 10 times faster and requires two orders of magnitude less memory for sequences that are still computationally accessible for exhaustive enumeration. Parallelized computation as well as additional heuristics further speed up computations while still producing high-quality transition model approximations. The introduced heuristics enable a guided trade-off between model quality and required computational resources. We introduce and evaluate a macroscopic direct path heuristics to efficiently compute refolding energy barrier estimations for the co-transcriptionally trapped RNA sv11 of length 115 nt. Finally, we also show how pourRNA can be used to identify folding funnels and their respective energetically lowest minima. AVAILABILITY AND IMPLEMENTATION: pourRNA is freely available at https://github.com/ViennaRNA/pourRNA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Dobramento de RNA , RNA , Algoritmos , Heurística , Cinética
4.
RNA Biol ; 18(sup1): 268-277, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34241565

RESUMO

MicroRNAs (miRNAs) can serve as activation signals for membrane receptors, a recently discovered function that is independent of the miRNAs' conventional role in post-transcriptional gene regulation. Here, we introduce a machine learning approach, BrainDead, to identify oligonucleotides that act as ligands for single-stranded RNA-detecting Toll-like receptors (TLR)7/8, thereby triggering an immune response. BrainDead was trained on activation data obtained from in vitro experiments on murine microglia, incorporating sequence and intra-molecular structure, as well as inter-molecular homo-dimerization potential of candidate RNAs. The method was applied to analyse all known human miRNAs regarding their potential to induce TLR7/8 signalling and microglia activation. We validated the predicted functional activity of subsets of high- and low-scoring miRNAs experimentally, of which a selection has been linked to Alzheimer's disease. High agreement between predictions and experiments confirms the robustness and power of BrainDead. The results provide new insight into the mechanisms of how miRNAs act as TLR ligands. Eventually, BrainDead implements a generic machine learning methodology for learning and predicting the functions of short RNAs in any context.


Assuntos
Regulação da Expressão Gênica , Aprendizado de Máquina , MicroRNAs/metabolismo , Microglia/metabolismo , Oligonucleotídeos/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , Animais , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Oligonucleotídeos/química , Oligonucleotídeos/genética , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/genética
5.
BMC Bioinformatics ; 21(1): 15, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931703

RESUMO

BACKGROUND: Seed and accessibility constraints are core features to enable highly accurate sRNA target screens based on RNA-RNA interaction prediction. Currently, available tools provide different (sets of) constraints and default parameter sets. Thus, it is hard to impossible for users to estimate the influence of individual restrictions on the prediction results. RESULTS: Here, we present a systematic assessment of the impact of established and new constraints on sRNA target prediction both on a qualitative as well as computational level. This is done exemplarily based on the performance of IntaRNA, one of the most exact sRNA target prediction tools. IntaRNA provides various ways to constrain considered seed interactions, e.g. based on seed length, its accessibility, minimal unpaired probabilities, or energy thresholds, beside analogous constraints for the overall interaction. Thus, our results reveal the impact of individual constraints and their combinations. CONCLUSIONS: This provides both a guide for users what is important and recommendations for existing and upcoming sRNA target prediction approaches.We show on a large sRNA target screen benchmark data set that only by altering the parameter set, IntaRNA recovers 30% more verified interactions while becoming 5-times faster. This exemplifies the potential of seed, accessibility and interaction constraints for sRNA target prediction.


Assuntos
Bactérias/genética , Biologia Computacional/métodos , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Bactérias/química , Bactérias/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/metabolismo
6.
Bioinformatics ; 35(14): i354-i359, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31510707

RESUMO

SUMMARY: SHAPE experiments are used to probe the structure of RNA molecules. We present ShaKer to predict SHAPE data for RNA using a graph-kernel-based machine learning approach that is trained on experimental SHAPE information. While other available methods require a manually curated reference structure, ShaKer predicts reactivity data based on sequence input only and by sampling the ensemble of possible structures. Thus, ShaKer is well placed to enable experiment-driven, transcriptome-wide SHAPE data prediction to enable the study of RNA structuredness and to improve RNA structure and RNA-RNA interaction prediction. For performance evaluation, we use accuracy and accessibility comparing to experimental SHAPE data and competing methods. We can show that Shaker outperforms its competitors and is able to predict high quality SHAPE annotations even when no reference structure is provided. AVAILABILITY AND IMPLEMENTATION: ShaKer is freely available at https://github.com/BackofenLab/ShaKer.


Assuntos
Algoritmos , Software , Aprendizado de Máquina , RNA , Transcriptoma
7.
Bioinformatics ; 35(16): 2862-2864, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30590479

RESUMO

SUMMARY: Experimental structure probing data has been shown to improve thermodynamics-based RNA secondary structure prediction. To this end, chemical reactivity information (as provided e.g. by SHAPE) is incorporated, which encodes whether or not individual nucleotides are involved in intra-molecular structure. Since inter-molecular RNA-RNA interactions are often confined to unpaired RNA regions, SHAPE data is even more promising to improve interaction prediction. Here, we show how such experimental data can be incorporated seamlessly into accessibility-based RNA-RNA interaction prediction approaches, as implemented in IntaRNA. This is possible via the computation and use of unpaired probabilities that incorporate the structure probing information. We show that experimental SHAPE data can significantly improve RNA-RNA interaction prediction. We evaluate our approach by investigating interactions of a spliceosomal U1 snRNA transcript with its target splice sites. When SHAPE data is incorporated, known target sites are predicted with increased precision and specificity. AVAILABILITY AND IMPLEMENTATION: https://github.com/BackofenLab/IntaRNA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA/genética , Estrutura Molecular , Conformação de Ácido Nucleico , Nucleotídeos , Termodinâmica
8.
Nucleic Acids Res ; 46(W1): W25-W29, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29788132

RESUMO

The Freiburg RNA tools webserver is a well established online resource for RNA-focused research. It provides a unified user interface and comprehensive result visualization for efficient command line tools. The webserver includes RNA-RNA interaction prediction (IntaRNA, CopraRNA, metaMIR), sRNA homology search (GLASSgo), sequence-structure alignments (LocARNA, MARNA, CARNA, ExpaRNA), CRISPR repeat classification (CRISPRmap), sequence design (antaRNA, INFO-RNA, SECISDesign), structure aberration evaluation of point mutations (RaSE), and RNA/protein-family models visualization (CMV), and other methods. Open education resources offer interactive visualizations of RNA structure and RNA-RNA interaction prediction as well as basic and advanced sequence alignment algorithms. The services are freely available at http://rna.informatik.uni-freiburg.de.


Assuntos
Sequência de Bases/genética , Internet , RNA/genética , Software , Algoritmos , Conformação de Ácido Nucleico , RNA/química , Alinhamento de Sequência/instrumentação , Análise de Sequência de RNA/instrumentação , Relação Estrutura-Atividade
9.
Int J Mol Sci ; 21(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481751

RESUMO

In silico RNA-RNA interaction prediction is widely applied to identify putative interaction partners and to assess interaction details in base pair resolution. To verify specific interactions, in vitro evidence can be obtained via compensatory mutation experiments. Unfortunately, the selection of compensatory mutations is non-trivial and typically based on subjective ad hoc decisions. To support the decision process, we introduce our COmPensatOry MUtation Selector CopomuS. CopomuS evaluates the effects of mutations on RNA-RNA interaction formation using a set of objective criteria, and outputs a reliable ranking of compensatory mutation candidates. For RNA-RNA interaction assessment, the state-of-the-art IntaRNA prediction tool is applied. We investigate characteristics of successfully verified RNA-RNA interactions from the literature, which guided the design of CopomuS. Finally, we evaluate its performance based on experimentally validated compensatory mutations of prokaryotic sRNAs and their target mRNAs. CopomuS predictions highly agree with known results, making it a valuable tool to support the design of verification experiments for RNA-RNA interactions. It is part of the IntaRNA package and available as stand-alone webserver for ad hoc application.


Assuntos
Biologia Computacional/métodos , Mutação , RNA Bacteriano/genética , RNA/química , Software , Tomada de Decisões , Genes Bacterianos , Internet , RNA Mensageiro/genética , Reprodutibilidade dos Testes
10.
PLoS Comput Biol ; 14(8): e1006341, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30161123

RESUMO

The investigation of RNA-based regulation of cellular processes is becoming an increasingly important part of biological or medical research. For the analysis of this type of data, RNA-related prediction tools are integrated into many pipelines and workflows. In order to correctly apply and tune these programs, the user has to have a precise understanding of their limitations and concepts. Within this manuscript, we provide the mathematical foundations and extract the algorithmic ideas that are core to state-of-the-art RNA structure and RNA-RNA interaction prediction algorithms. To allow the reader to change and adapt the algorithms or to play with different inputs, we provide an open-source web interface to JavaScript implementations and visualizations of each algorithm. The conceptual, teaching-focused presentation enables a high-level survey of the approaches, while providing sufficient details for understanding important concepts. This is boosted by the simple generation and study of examples using the web interface available at http://rna.informatik.uni-freiburg.de/Teaching/. In combination, we provide a valuable resource for teaching, learning, and understanding the discussed prediction tools and thus enable a more informed analysis of RNA-related effects.


Assuntos
Previsões/métodos , Análise de Sequência de RNA/métodos , Algoritmos , Internet , Conformação de Ácido Nucleico , RNA/genética , Dobramento de RNA/fisiologia , Software , Termodinâmica
11.
Methods Mol Biol ; 2726: 209-234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38780733

RESUMO

Computational prediction of RNA-RNA interactions (RRI) is a central methodology for the specific investigation of inter-molecular RNA interactions and regulatory effects of non-coding RNAs like eukaryotic microRNAs or prokaryotic small RNAs. Available methods can be classified according to their underlying prediction strategies, each implicating specific capabilities and restrictions often not transparent to the non-expert user. Within this work, we review seven classes of RRI prediction strategies and discuss the advantages and limitations of respective tools, since such knowledge is essential for selecting the right tool in the first place.Among the RRI prediction strategies, accessibility-based approaches have been shown to provide the most reliable predictions. Here, we describe how IntaRNA, as one of the state-of-the-art accessibility-based tools, can be applied in various use cases for the task of computational RRI prediction. Detailed hands-on examples for individual RRI predictions as well as large-scale target prediction scenarios are provided. We illustrate the flexibility and capabilities of IntaRNA through the examples. Each example is designed using real-life data from the literature and is accompanied by instructions on interpreting the respective results from IntaRNA output. Our use-case driven instructions enable non-expert users to comprehensively understand and utilize IntaRNA's features for effective RRI predictions.


Assuntos
Biologia Computacional , Software , Biologia Computacional/métodos , RNA/genética , RNA/metabolismo , Algoritmos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo
12.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38837942

RESUMO

BACKGROUND: RNA-RNA interactions are key to a wide range of cellular functions. The detection of potential interactions helps to understand the underlying processes. However, potential interactions identified via in silico or experimental high-throughput methods can lack precision because of a high false-positive rate. RESULTS: We present CheRRI, the first tool to evaluate the biological relevance of putative RNA-RNA interaction sites. CheRRI filters candidates via a machine learning-based model trained on experimental RNA-RNA interactome data. Its unique setup combines interactome data and an established thermodynamic prediction tool to integrate experimental data with state-of-the-art computational models. Applying these data to an automated machine learning approach provides the opportunity to not only filter data for potential false positives but also tailor the underlying interaction site model to specific needs. CONCLUSIONS: CheRRI is a stand-alone postprocessing tool to filter either predicted or experimentally identified potential RNA-RNA interactions on a genomic level to enhance the quality of interaction candidates. It is easy to install (via conda, pip packages), use (via Galaxy), and integrate into existing RNA-RNA interaction pipelines.


Assuntos
Biologia Computacional , Aprendizado de Máquina , RNA , Software , RNA/metabolismo , Biologia Computacional/métodos , Sítios de Ligação , Humanos
13.
Front Immunol ; 13: 1066456, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713399

RESUMO

Introduction: The pandemic coronavirus disease 19 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is marked by thromboembolic events and an inflammatory response throughout the body, including the brain. Methods: Employing the machine learning approach BrainDead we systematically screened for SARS-CoV-2 genome-derived single-stranded (ss) RNA fragments with high potential to activate the viral RNA-sensing innate immune receptors Toll-like receptor (TLR)7 and/or TLR8. Analyzing HEK TLR7/8 reporter cells we tested such RNA fragments with respect to their potential to induce activation of human TLR7 and TLR8 and to activate human macrophages, as well as iPSC-derived human microglia, the resident immune cells in the brain. Results: We experimentally validated several sequence-specific RNA fragment candidates out of the SARS-CoV-2 RNA fragments predicted in silico as activators of human TLR7 and TLR8. Moreover, these SARS-CoV-2 ssRNAs induced cytokine release from human macrophages and iPSC-derived human microglia in a sequence- and species-specific fashion. Discussion: Our findings determine TLR7 and TLR8 as key sensors of SARS-CoV-2-derived ssRNAs and may deepen our understanding of the mechanisms how this virus triggers, but also modulates an inflammatory response through innate immune signaling.


Assuntos
COVID-19 , Citocinas , Humanos , SARS-CoV-2/genética , RNA Viral , Receptor 7 Toll-Like , Microglia , Receptor 8 Toll-Like , Macrófagos
14.
Front Microbiol ; 12: 656435, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220744

RESUMO

Small RNAs (sRNAs) are one of the key players in the post-transcriptional regulation of bacterial gene expression. These molecules, together with transcription factors, form regulatory networks and greatly influence the bacterial regulatory landscape. Little is known concerning sRNAs and their influence on the regulatory machinery in the genus Corynebacterium, despite its medical, veterinary and biotechnological importance. Here, we expand corynebacterial regulatory knowledge by integrating sRNAs and their regulatory interactions into the transcriptional regulatory networks of six corynebacterial species, covering four human and animal pathogens, and integrate this data into the CoryneRegNet database. To this end, we predicted sRNAs to regulate 754 genes, including 206 transcription factors, in corynebacterial gene regulatory networks. Amongst them, the sRNA Cd-NCTC13129-sRNA-2 is predicted to directly regulate ydfH, which indirectly regulates 66 genes, including the global regulator glxR in C. diphtheriae. All of the sRNA-enriched regulatory networks of the genus Corynebacterium have been made publicly available in the newest release of CoryneRegNet(www.exbio.wzw.tum.de/coryneregnet/) to aid in providing valuable insights and to guide future experiments.

15.
Mol Neurodegener ; 16(1): 80, 2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34838071

RESUMO

BACKGROUND: MicroRNA (miRNA) expression in the brain is altered in neurodegenerative diseases. Recent studies demonstrated that selected miRNAs conventionally regulating gene expression at the post-transcriptional level can act extracellularly as signaling molecules. The identity of miRNA species serving as membrane receptor ligands involved in neuronal apoptosis in the central nervous system (CNS), as well as the miRNAs' sequence and structure required for this mode of action remained largely unresolved. METHODS: Using a microarray-based screening approach we analyzed apoptotic cortical neurons of C56BL/6 mice and their supernatant with respect to alterations in miRNA expression/presence. HEK-Blue Toll-like receptor (TLR) 7/8 reporter cells, primary microglia and macrophages derived from human and mouse were employed to test the potential of the identified miRNAs released from apoptotic neurons to serve as signaling molecules for the RNA-sensing receptors. Biophysical and bioinformatical approaches, as well as immunoassays and sequential microscopy were used to analyze the interaction between candidate miRNA and TLR. Immunocytochemical and -histochemical analyses of murine CNS cultures and adult mice intrathecally injected with miRNAs, respectively, were performed to evaluate the impact of miRNA-induced TLR activation on neuronal survival and microglial activation. RESULTS: We identified a specific pattern of miRNAs released from apoptotic cortical neurons that activate TLR7 and/or TLR8, depending on sequence and species. Exposure of microglia and macrophages to certain miRNA classes released from apoptotic neurons resulted in the sequence-specific production of distinct cytokines/chemokines and increased phagocytic activity. Out of those miRNAs miR-100-5p and miR-298-5p, which have consistently been linked to neurodegenerative diseases, entered microglia, located to their endosomes, and directly bound to human TLR8. The miRNA-TLR interaction required novel sequence features, but no specific structure formation of mature miRNA. As a consequence of miR-100-5p- and miR-298-5p-induced TLR activation, cortical neurons underwent cell-autonomous apoptosis. Presence of miR-100-5p and miR-298-5p in cerebrospinal fluid led to neurodegeneration and microglial accumulation in the murine cerebral cortex through TLR7 signaling. CONCLUSION: Our data demonstrate that specific miRNAs are released from apoptotic cortical neurons, serve as endogenous TLR7/8 ligands, and thereby trigger further neuronal apoptosis in the CNS. Our findings underline the recently discovered role of miRNAs as extracellular signaling molecules, particularly in the context of neurodegeneration.


Assuntos
MicroRNAs , Receptor 7 Toll-Like , Animais , Córtex Cerebral/metabolismo , Ligantes , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo
16.
Algorithms Mol Biol ; 15(1): 19, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33292340

RESUMO

MOTIVATION: Simultaneous alignment and folding (SA&F) of RNAs is the indispensable gold standard for inferring the structure of non-coding RNAs and their general analysis. The original algorithm, proposed by Sankoff, solves the theoretical problem exactly with a complexity of [Formula: see text] in the full energy model. Over the last two decades, several variants and improvements of the Sankoff algorithm have been proposed to reduce its extreme complexity by proposing simplified energy models or imposing restrictions on the predicted alignments. RESULTS: Here, we introduce a novel variant of Sankoff's algorithm that reconciles the simplifications of PMcomp, namely moving from the full energy model to a simpler base pair-based model, with the accuracy of the loop-based full energy model. Instead of estimating pseudo-energies from unconditional base pair probabilities, our model calculates energies from conditional base pair probabilities that allow to accurately capture structure probabilities, which obey a conditional dependency. This model gives rise to the fast and highly accurate novel algorithm Pankov (Probabilistic Sankoff-like simultaneous alignment and folding of RNAs inspired by Markov chains). CONCLUSIONS: Pankov benefits from the speed-up of excluding unreliable base-pairing without compromising the loop-based free energy model of the Sankoff's algorithm. We show that Pankov outperforms its predecessors LocARNA and SPARSE in folding quality and is faster than LocARNA.

17.
J Bioinform Comput Biol ; 17(5): 1940009, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31856671

RESUMO

Efficient computational tools for the identification of putative target RNAs regulated by prokaryotic sRNAs rely on thermodynamic models of RNA secondary structures. While they typically predict RNA-RNA interaction complexes accurately, they yield many highly-ranked false positives in target screens. One obvious source of this low specificity appears to be the disability of current secondary-structure-based models to reflect steric constraints, which nevertheless govern the kinetic formation of RNA-RNA interactions. For example, often - even thermodynamically favorable - extensions of short initial kissing hairpin interactions are kinetically prohibited, since this would require unwinding of intra-molecular helices as well as sterically impossible bending of the interaction helix. Another source is the consideration of instable and thus unlikely subinteractions that enable better scoring of longer interactions. In consequence, the efficient prediction methods that do not consider such effects show a high false positive rate. To increase the prediction accuracy we devise IntaRNAhelix, a dynamic programming algorithm that length-restricts the runs of consecutive inter-molecular base pairs (perfect canonical stackings), which we hypothesize to implicitly model the steric and kinetic effects. The novel method is implemented by extending the state-of-the-art tool IntaRNA. Our comprehensive bacterial sRNA target prediction benchmark demonstrates significant improvements of the prediction accuracy and enables more than 40-times faster computations. These results indicate - supporting our hypothesis - that stable helix composition increases the accuracy of interaction prediction models compared to the current state-of-the-art approach.


Assuntos
Algoritmos , Biologia Computacional/métodos , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Pareamento de Bases , Conformação de Ácido Nucleico , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA