Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 35(2): 140-146, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38265691

RESUMO

Antibody-drug conjugates (ADCs) are an established modality that allow for targeted delivery of a potent molecule, or payload, to a desired site of action. ADCs, wherein the payload is a targeted protein degrader, are an emerging area in the field. Herein we describe our efforts of delivering a Bruton's tyrosine kinase (BTK) bifunctional degrader 1 via a CD79b mAb (monoclonal antibody) where the degrader is linked at the ligase binding portion of the payload via a cleavable linker to the mAb. The resulting CD79b ADCs, 3 and 4, exhibit in vitro degradation and cytotoxicity comparable with that of 1, and ADC 3 can achieve more sustained in vivo degradation than intravenously administered 1 with markedly reduced systemic exposure of the payload.


Assuntos
Imunoconjugados , Imunoconjugados/química , Tirosina Quinase da Agamaglobulinemia , Anticorpos Monoclonais/química
2.
Blood ; 134(21): 1832-1846, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31511238

RESUMO

Increased energy requirement and metabolic reprogramming are hallmarks of cancer cells. We show that metabolic alterations in hematopoietic cells are fundamental to the pathogenesis of mutant JAK2-driven myeloproliferative neoplasms (MPNs). We found that expression of mutant JAK2 augmented and subverted metabolic activity of MPN cells, resulting in systemic metabolic changes in vivo, including hypoglycemia, adipose tissue atrophy, and early mortality. Hypoglycemia in MPN mouse models correlated with hyperactive erythropoiesis and was due to a combination of elevated glycolysis and increased oxidative phosphorylation. Modulating nutrient supply through high-fat diet improved survival, whereas high-glucose diet augmented the MPN phenotype. Transcriptomic and metabolomic analyses identified numerous metabolic nodes in JAK2-mutant hematopoietic stem and progenitor cells that were altered in comparison with wild-type controls. We studied the consequences of elevated levels of Pfkfb3, a key regulatory enzyme of glycolysis, and found that pharmacological inhibition of Pfkfb3 with the small molecule 3PO reversed hypoglycemia and reduced hematopoietic manifestations of MPNs. These effects were additive with the JAK1/2 inhibitor ruxolitinib in vivo and in vitro. Inhibition of glycolysis by 3PO altered the redox homeostasis, leading to accumulation of reactive oxygen species and augmented apoptosis rate. Our findings reveal the contribution of metabolic alterations to the pathogenesis of MPNs and suggest that metabolic dependencies of mutant cells represent vulnerabilities that can be targeted for treating MPNs.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Janus Quinase 2/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Animais , Humanos , Camundongos , Mutação
3.
Blood ; 129(11): e26-e37, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28122742

RESUMO

Drug sensitivity and resistance testing on diagnostic leukemia samples should provide important functional information to guide actionable target and biomarker discovery. We provide proof of concept data by profiling 60 drugs on 68 acute lymphoblastic leukemia (ALL) samples mostly from resistant disease in cocultures of bone marrow stromal cells. Patient-derived xenografts retained the original pattern of mutations found in the matched patient material. Stromal coculture did not prevent leukemia cell cycle activity, but a specific sensitivity profile to cell cycle-related drugs identified samples with higher cell proliferation both in vitro and in vivo as leukemia xenografts. In patients with refractory relapses, individual patterns of marked drug resistance and exceptional responses to new agents of immediate clinical relevance were detected. The BCL2-inhibitor venetoclax was highly active below 10 nM in B-cell precursor ALL (BCP-ALL) subsets, including MLL-AF4 and TCF3-HLF ALL, and in some T-cell ALLs (T-ALLs), predicting in vivo activity as a single agent and in combination with dexamethasone and vincristine. Unexpected sensitivity to dasatinib with half maximal inhibitory concentration values below 20 nM was detected in 2 independent T-ALL cohorts, which correlated with similar cytotoxic activity of the SRC inhibitor KX2-391 and inhibition of SRC phosphorylation. A patient with refractory T-ALL was treated with dasatinib on the basis of drug profiling information and achieved a 5-month remission. Thus, drug profiling captures disease-relevant features and unexpected sensitivity to relevant drugs, which warrants further exploration of this functional assay in the context of clinical trials to develop drug repurposing strategies for patients with urgent medical needs.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Células Cultivadas , Técnicas de Cocultura , Xenoenxertos , Humanos , Células-Tronco Mesenquimais/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
4.
Blood ; 128(6): 839-51, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27288519

RESUMO

Mutations in JAK2 exon 12 are frequently found in patients with polycythemia vera (PV) that do not carry a JAK2-V617F mutation. The majority of these patients display isolated erythrocytosis. We generated a mouse model that expresses JAK2-N542-E543del, the most frequent JAK2 exon 12 mutation found in PV patients. Mice expressing the human JAK2-N542-E543del (Ex12) showed a strong increase in red blood cell parameters but normal neutrophil and platelet counts, and reduced overall survival. Erythropoiesis was increased in the bone marrow and spleen, with normal megakaryopoiesis and absence of myelofibrosis in histopathology. Erythroid progenitors and precursors were increased in hematopoietic tissues, but the numbers of megakaryocytic precursors were unchanged. Phosphorylation Stat3 and Erk1/2 proteins were increased, and a trend toward increased phospho-Stat5 and phospho-Stat1 was noted. However, Stat1 knock out in Ex12 mice induced no changes in platelet or red cell parameters, indicating that Stat1 does not play a central role in mediating the effects of Ex12 signaling on megakaryopoiesis or erythropoiesis. Ex12 mice showed decreased expression of hepcidin and increased expression of transferrin receptor-1 and erythroferrone, suggesting that the strong erythroid phenotype in Ex12 mutant mice is favored by changes in iron metabolism that optimize iron availability to allow maximal production of red cells.


Assuntos
Eritropoese , Janus Quinase 2/genética , Mutação , Policitemia/genética , Animais , Sequência de Bases , Eritrócitos/patologia , Éxons , Ferro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Policitemia/metabolismo , Policitemia/fisiopatologia
5.
Bioorg Med Chem Lett ; 28(12): 2153-2158, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29759726

RESUMO

Starting from a weak screening hit, potent and selective inhibitors of the MALT1 protease function were elaborated. Advanced compounds displayed high potency in biochemical and cellular assays. Compounds showed activity in a mechanistic Jurkat T cell activation assay as well as in the B-cell lymphoma line OCI-Ly3, which suggests potential use of MALT1 inhibitors in the treatment of autoimmune diseases as well as B-cell lymphomas with a dysregulated NF-κB pathway. Initially, rat pharmacokinetic properties of this compound series were dominated by very high clearance which could be linked to amide cleavage. Using a rat hepatocyte assay a good in vitro-in vivo correlation could be established which led to the identification of compounds with improved PK properties.


Assuntos
Antineoplásicos/farmacologia , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/antagonistas & inibidores , Piperidinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hepatócitos/efeitos dos fármacos , Humanos , Células Jurkat , Microssomos/efeitos dos fármacos , Estrutura Molecular , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Piperidinas/síntese química , Piperidinas/química , Proteólise/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade
6.
Blood ; 121(7): 1188-99, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23264594

RESUMO

To establish a preclinical animal model for testing drugs with potential effects on myeloproliferative neoplasms (MPNs), we first performed a detailed phenotypic characterization of Cre-inducible transgenic JAK2-V617F mice. Deleting the conditional mouse Jak2-knockout alleles increased erythropoiesis and accentuated the polycythemia vera phenotype, but did not alter platelet or granulocyte levels. In a transplantation assay, JAK2-V617F(+) BM cells had an advantage over wild-type competitor cells. Using this competitive repopulation assay, we compared the effects of INC424 (ruxolitinib), a dual Jak1/Jak2 inhibitor, and hydroxyurea (HU). HU led to weight loss, but did not reduce spleen weight. The hematologic parameters were lowered and a slight decrease of the mutant allele burden was noted. INC424 had little effect on body weight, but strongly decreased spleen size and rapidly normalized RBC and neutrophil parameters. No significant decrease in the mutant allele burden was observed. INC424 reduced the phospho-Stat5 levels, whereas HU strongly increased phospho-Stat5, most likely because of the elevated erythropoietin levels in response to the HU-induced anemia. This compensatory increase in JAK/STAT signaling may counteract the beneficial effects of cytoreduction at higher doses of HU and represents an adverse effect that should be avoided.


Assuntos
Hidroxiureia/farmacologia , Janus Quinase 2/genética , Policitemia Vera/tratamento farmacológico , Policitemia Vera/genética , Pirazóis/farmacologia , Alelos , Substituição de Aminoácidos , Animais , Transplante de Medula Óssea , Modelos Animais de Doenças , Feminino , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Nitrilas , Fenótipo , Policitemia Vera/metabolismo , Policitemia Vera/patologia , Pirimidinas , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Acta Haematol ; 132(1): 75-86, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24504330

RESUMO

Janus kinases are critical components of signaling pathways that regulate hematopoiesis. Mutations of the non-receptor tyrosine kinase JAK2 are found in many BCR-ABL-negative myeloproliferative neoplasms. Preclinical results support that JAK2 inhibitors could show efficacy in treating chronic myeloproliferative neoplasms. JAK2 has also been postulated to play a role in BCR-ABL signal transduction. Therefore, inhibitors of JAK2 kinases are turning into therapeutic strategies for treatment of chronic myelogenous leukemia (CML). In this study, the effects of two novel JAK2 inhibitors, NVP-BSK805 and NVP-BVB808, have been investigated in cell lines expressing either BCR-ABL or mutant JAK2. Possible synergies between NVP-BSK805/NVP-BVB808 and the kinase inhibitors imatinib and nilotinib were assessed. Proliferation and apoptosis tests with both substances showed response in the following cell lines: CHRF-288-11, SET-2 and UKE-1. All BCR-ABL-positive cell lines showed some reduction in proliferation, but with half-maximal growth-inhibitory values >1 µM. Combination of the JAK2 inhibitors with imatinib and nilotinib showed no significant additive or synergistic effects, although all BCR-ABL-positive cell lines responded well to both CML therapeutic agents. Interestingly, it seemed that the combination of imatinib with NVP-BSK805 had a protective effect on the cells. Combination treatment with nilotinib did not show this effect.


Assuntos
Proteínas de Fusão bcr-abl/genética , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Quinoxalinas/farmacologia , Apoptose/efeitos dos fármacos , Benzamidas/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/enzimologia , Transtornos Mieloproliferativos/genética , Fosforilação/efeitos dos fármacos , Piperazinas/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Pirimidinas/administração & dosagem , Quinoxalinas/administração & dosagem , Fator de Transcrição STAT5/metabolismo , Proteínas Supressoras de Tumor/metabolismo
8.
Drug Resist Updat ; 16(3-5): 68-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24169539

RESUMO

The widespread hyperactivation of the PI3K/mTOR pathway in human cancer has made it a prime target for the treatment of this disease. However, a variety of resistance mechanisms involving (re)activation of the targeted pathway or of parallel survival signaling cascades have limited the clinical success of inhibitors targeting PI3K and/or mTOR. Recent studies delineated new crosstalks between PI3K, HER2, JAK2 and IL-8 signaling, which can explain the limited efficacy of PI3K blockade when inhibitors of this pathway are used as single agents. In this review, we summarize molecular mechanisms of resistance to inhibitors of the PI3K/mTOR pathway, provide an outline of new connections between crucial oncogenic signaling pathways, and discuss the potential of new combination therapy approaches to overcome resistance.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Janus Quinase 2/antagonistas & inibidores , Modelos Biológicos , Inibidores de Fosfoinositídeo-3 Quinase , Receptor ErbB-2/antagonistas & inibidores , Animais , Mama/efeitos dos fármacos , Mama/imunologia , Mama/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Sinergismo Farmacológico , Feminino , Humanos , Imunomodulação/efeitos dos fármacos , Interleucina-8/antagonistas & inibidores , Interleucina-8/metabolismo , Janus Quinase 2/metabolismo , Terapia de Alvo Molecular , Metástase Neoplásica , Fosfatidilinositol 3-Quinase/metabolismo , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Nat Commun ; 15(1): 275, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177131

RESUMO

Targeted protein degradation (TPD) mediates protein level through small molecule induced redirection of E3 ligases to ubiquitinate neo-substrates and mark them for proteasomal degradation. TPD has recently emerged as a key modality in drug discovery. So far only a few ligases have been utilized for TPD. Interestingly, the workhorse ligase CRBN has been observed to be downregulated in settings of resistance to immunomodulatory inhibitory drugs (IMiDs). Here we show that the essential E3 ligase receptor DCAF1 can be harnessed for TPD utilizing a selective, non-covalent DCAF1 binder. We confirm that this binder can be functionalized into an efficient DCAF1-BRD9 PROTAC. Chemical and genetic rescue experiments validate specific degradation via the CRL4DCAF1 E3 ligase. Additionally, a dasatinib-based DCAF1 PROTAC successfully degrades cytosolic and membrane-bound tyrosine kinases. A potent and selective DCAF1-BTK-PROTAC (DBt-10) degrades BTK in cells with acquired resistance to CRBN-BTK-PROTACs while the DCAF1-BRD9 PROTAC (DBr-1) provides an alternative strategy to tackle intrinsic resistance to VHL-degrader, highlighting DCAF1-PROTACS as a promising strategy to overcome ligase mediated resistance in clinical settings.


Assuntos
Proteínas de Transporte , Quimera de Direcionamento de Proteólise , Ubiquitina-Proteína Ligases , Proteínas de Transporte/metabolismo , Proteólise , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
10.
PLoS Genet ; 6(5): e1000937, 2010 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-20463884

RESUMO

S6 kinases (S6Ks) act to integrate nutrient and insulin signaling pathways and, as such, function as positive effectors in cell growth and organismal development. However, they also have been shown to play a key role in limiting insulin signaling and in mediating the autophagic response. To identify novel regulators of S6K signaling, we have used a Drosophila-based, sensitized, gain-of-function genetic screen. Unexpectedly, one of the strongest enhancers to emerge from this screen was the nuclear receptor (NR), Drosophila hormone receptor 3 (DHR3), a critical constituent in the coordination of Drosophila metamorphosis. Here we demonstrate that DHR3, through dS6K, also acts to regulate cell-autonomous growth. Moreover, we show that the ligand-binding domain (LBD) of DHR3 is essential for mediating this response. Consistent with these findings, we have identified an endogenous DHR3 isoform that lacks the DBD. These results provide the first molecular link between the dS6K pathway, critical in controlling nutrient-dependent growth, and that of DHR3, a major mediator of ecdysone signaling, which, acting together, coordinate metamorphosis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Animais , Drosophila/química , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Metamorfose Biológica , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Quinases S6 Ribossômicas/genética , Transdução de Sinais
11.
ACS Med Chem Lett ; 14(7): 949-954, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37465299

RESUMO

In this study, we describe the rapid identification of potent binders for the WD40 repeat domain (WDR) of DCAF1. This was achieved by two rounds of iterative focused screening of a small set of compounds selected on the basis of internal WDR domain knowledge followed by hit expansion. Subsequent structure-based design led to nanomolar potency binders with a clear exit vector enabling DCAF1-based bifunctional degrader exploration.

12.
Cancer Res ; 82(6): 1098-1109, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131871

RESUMO

Preventing development of childhood B-cell acute lymphoblastic leukemia (B-ALL), a disease with devastating effects, is a longstanding and unsolved challenge. Heterozygous germline alterations in the PAX5 gene can lead to B-ALL upon accumulation of secondary mutations affecting the JAK/STAT signaling pathway. Preclinical studies have shown that this malignant transformation occurs only under immune stress such as exposure to infectious pathogens. Here we show in Pax5+/- mice that transient, early-life administration of clinically relevant doses of ruxolitinib, a JAK1/2 inhibitor, significantly mitigates the risk of B-ALL following exposure to infection; 1 of 29 animals treated with ruxolitinib developed B-ALL versus 8 of 34 untreated mice. Ruxolitinib treatment preferentially targeted Pax5+/- versus wild-type B-cell progenitors and exerted unique effects on the Pax5+/- B-cell progenitor transcriptional program. These findings provide the first in vivo evidence for a potential strategy to prevent B-ALL development. SIGNIFICANCE: JAK/STAT inhibition suppresses tumorigenesis in a B-ALL-susceptible mouse model, presenting a novel approach to prevent B-ALL onset.


Assuntos
Janus Quinases , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Humanos , Janus Quinases/genética , Camundongos , Fator de Transcrição PAX5/genética , Fatores de Transcrição STAT , Transdução de Sinais/genética
13.
Oncogene ; 41(39): 4459-4473, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36008466

RESUMO

Plasticity delineates cancer subtypes with more or less favourable outcomes. In breast cancer, the subtype triple-negative lacks expression of major differentiation markers, e.g., estrogen receptor α (ERα), and its high cellular plasticity results in greater aggressiveness and poorer prognosis than other subtypes. Whether plasticity itself represents a potential vulnerability of cancer cells is not clear. However, we show here that cancer cell plasticity can be exploited to differentiate triple-negative breast cancer (TNBC). Using a high-throughput imaging-based reporter drug screen with 9 501 compounds, we have identified three polo-like kinase 1 (PLK1) inhibitors as major inducers of ERα protein expression and downstream activity in TNBC cells. PLK1 inhibition upregulates a cell differentiation program characterized by increased DNA damage, mitotic arrest, and ultimately cell death. Furthermore, cells surviving PLK1 inhibition have decreased tumorigenic potential, and targeting PLK1 in already established tumours reduces tumour growth both in cell line- and patient-derived xenograft models. In addition, the upregulation of genes upon PLK1 inhibition correlates with their expression in normal breast tissue and with better overall survival in breast cancer patients. Our results indicate that differentiation therapy based on PLK1 inhibition is a potential alternative strategy to treat TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Mama/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Receptor alfa de Estrogênio , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
14.
BMC Cancer ; 11: 24, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21247487

RESUMO

BACKGROUND: The JAK2V617F mutation plays a major role in the pathogenesis of myeloproliferative neoplasms and is found in the vast majority of patients suffering from polycythemia vera and in roughly every second patient suffering from essential thrombocythemia or from primary myelofibrosis. The V617F mutation is thought to provide hematopoietic stem cells and myeloid progenitors with a survival and proliferation advantage. It has previously been shown that activated JAK2 promotes cell survival by upregulating the anti-apoptotic STAT5 target gene Bcl-xL. In this study, we have investigated the role of additional apoptotic players, the pro-apoptotic protein Bim as well as the anti-apoptotic protein Mcl-1. METHODS: Pharmacological inhibition of JAK2/STAT5 signaling in JAK2V617F mutant SET-2 and MB-02 cells was used to study effects on signaling, cell proliferation and apoptosis by Western blot analysis, WST-1 proliferation assays and flow cytometry. Cells were transfected with siRNA oligos to deplete candidate pro- and anti-apoptotic proteins. Co-immunoprecipitation assays were performed to assess the impact of JAK2 inhibition on complexes of pro- and anti-apoptotic proteins. RESULTS: Treatment of JAK2V617F mutant cell lines with a JAK2 inhibitor was found to trigger Bim activation. Furthermore, Bim depletion by RNAi suppressed JAK2 inhibitor-induced cell death. Bim activation following JAK2 inhibition led to enhanced sequestration of Mcl-1, besides Bcl-xL. Importantly, Mcl-1 depletion by RNAi was sufficient to compromise JAK2V617F mutant cell viability and sensitized the cells to JAK2 inhibition. CONCLUSIONS: We conclude that Bim and Mcl-1 have key opposing roles in regulating JAK2V617F cell survival and propose that inactivation of aberrant JAK2 signaling leads to changes in Bim complexes that trigger cell death. Thus, further preclinical evaluation of combinations of JAK2 inhibitors with Bcl-2 family antagonists that also tackle Mcl-1, besides Bcl-xL, is warranted to assess the therapeutic potential for the treatment of chronic myeloproliferative neoplasms.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Apoptose/fisiologia , Janus Quinase 2/metabolismo , Proteínas de Membrana/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Substituição de Aminoácidos , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Western Blotting , Inibidores de Caspase , Caspases/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Citometria de Fluxo , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteína de Sequência 1 de Leucemia de Células Mieloides , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinoxalinas/farmacologia , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos
15.
Nat Cell Biol ; 5(6): 559-65, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12766775

RESUMO

Understanding the mechanisms through which multicellular organisms regulate cell, organ and body growth is of relevance to developmental biology and to research on growth-related diseases such as cancer. Here we describe a new effector in growth control, the small GTPase Rheb (Ras homologue enriched in brain). Mutations in the Drosophila melanogaster Rheb gene were isolated as growth-inhibitors, whereas overexpression of Rheb promoted cell growth. Our genetic and biochemical analyses suggest that Rheb functions downstream of the tumour suppressors Tsc1 (tuberous sclerosis 1)-Tsc2 in the TOR (target of rapamycin) signalling pathway to control growth, and that a major effector of Rheb function is ribosomal S6 kinase (S6K).


Assuntos
Divisão Celular/genética , Proteínas de Drosophila/metabolismo , Substâncias de Crescimento/metabolismo , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Neuropeptídeos/fisiologia , Proteínas Quinases S6 Ribossômicas/metabolismo , Animais , Divisão Celular/fisiologia , Tamanho Celular/genética , Tamanho Celular/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Olho/ultraestrutura , Feminino , Deleção de Genes , Genes de Insetos , Genes Supressores de Tumor , Substâncias de Crescimento/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Neuropeptídeos/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Quinases S6 Ribossômicas/genética , Transdução de Sinais , Ativação Transcricional , Transgenes
16.
Nat Cell Biol ; 4(3): 251-5, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11862217

RESUMO

Genetic studies in Drosophila melanogaster underscore the importance of the insulin-signalling pathway in controlling cell, organ and animal size. Effectors of this pathway include Chico (the insulin receptor substrate homologue), dPI(3)K, dPKB, dPTEN, and dS6K. Mutations in any of these components have a striking effect on cell size and number, with the exception of dS6K. Mutants in dS6K affect cell size but not cell number, seemingly consistent with arguments that dS6K is a distal effector in the signalling pathway, directly controlled by dTOR, a downstream effector of dPI(3)K and dPKB. Unexpectedly, recent studies showed that dS6K activity is unimpaired in chico-deficient larvae, suggesting that dS6K activation may be mediated through the dPI(3)K docking sites of the Drosophila insulin receptor. Here, we show genetically, pharmacologically and biochemically that dS6K resides on an insulin signalling pathway distinct from that of dPKB, and surprisingly also from that of dPI(3)K. More striking, despite dPKB-dPI(3)K-independence, dS6K activity is dependent on the Drosophila homologue of the phosphoinositide-dependent protein kinase 1, dPDK1, demonstrating that both dPDK1, as well as dTOR, mediated dS6K activation is phosphatidylinositide-3,4,5-trisphosphate (PIP3)-independent.


Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Animais , Divisão Celular/fisiologia , Proteínas de Drosophila , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Ativação Enzimática , Olho/crescimento & desenvolvimento , Genes de Insetos , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt , Receptor de Insulina/metabolismo , Proteínas Quinases S6 Ribossômicas/genética , Transdução de Sinais , Asas de Animais/crescimento & desenvolvimento
19.
Leuk Lymphoma ; 61(13): 3052-3065, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32799592

RESUMO

Myeloproliferative neoplasms polycythemia vera (PV), essential thrombocythaemia (ET) and primary myelofibrosis constitute a group of haematological diseases. The comprehensive assessment of signaling pathway activation in blood cells may aid the understanding of MPN pathophysiology. Thus, levels of post-translational protein modifications and total protein expression were determined in MPN patients and control leukocytes by using reverse-phase protein arrays (RPPA). Compared to control samples, p-SRC, p-CTNNB1, c-MYC, MCL-1, p-MDM2, BAX and CCNB1 showed higher expression in PV samples than controls. P-JAK2/JAK2 and pro-apoptotic BIM showed differential expression between JAK2V617F-positive and -negative ET patients. Apoptosis, cancer and PI3K/AKT pathways proteins showed differential expression among the studied groups. For most of the proteins analyzed using Western-Blot and RPPA, RPPA showed higher sensitivity to detect subtle differences. Taken together, our data indicate deregulated protein expression in MPN patients compared to controls. Thus, RPPA may be a useful method for broad proteome analysis in MPN patients´ leukocytes.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética , Fosfatidilinositol 3-Quinases , Análise Serial de Proteínas , Proteômica
20.
Sci Rep ; 10(1): 20044, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208877

RESUMO

MYC oncoprotein is a multifunctional transcription factor that regulates the expression of a large number of genes involved in cellular growth, proliferation and metabolism. Altered MYC protein level lead to cellular transformation and tumorigenesis. MYC is deregulated in > 50% of human cancers, rendering it an attractive drug target. However, direct inhibition of this class of proteins using conventional small molecules is challenging due to their intrinsically disordered state. To discover novel posttranslational regulators of MYC protein stability and turnover, we established a genetic screen in mammalian cells by combining a fluorescent protein-based MYC abundance sensor, CRISPR/Cas9-based gene knockouts and next-generation sequencing. Our screen identifies UBR5, an E3 ligase of the HECT-type family, as a novel regulator of MYC degradation. Even in the presence of the well-described and functional MYC ligase, FBXW7, UBR5 depletion leads to accumulation of MYC in cells. We demonstrate interaction of UBR5 with MYC and reduced K48-linked ubiquitination of MYC upon loss of UBR5 in cells. Interestingly, in cancer cell lines with amplified MYC expression, depletion of UBR5 resulted in reduced cell survival, as a consequence of MYC stabilization. Finally, we show that MYC and UBR5 are co-amplified in more than 40% of cancer cells and that MYC copy number amplification correlates with enhanced transcriptional output of UBR5. This suggests that UBR5 acts as a buffer in MYC amplified settings and protects these cells from apoptosis.


Assuntos
Sistemas CRISPR-Cas , Neoplasias/patologia , Proteólise , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Apoptose , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA