Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 63(6): 100226, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35568253

RESUMO

Epidermal omega-O-acylceramides (ω-O-acylCers) are essential components of a competent skin barrier. These unusual sphingolipids with ultralong N-acyl chains contain linoleic acid esterified to the terminal hydroxyl of the N-acyl, the formation of which requires the transacylase activity of patatin-like phospholipase domain containing 1 (PNPLA1). In ichthyosis with dysfunctional PNPLA1, ω-O-acylCer levels are significantly decreased, and ω-hydroxylated Cers (ω-OHCers) accumulate. Here, we explore the role of the linoleate moiety in ω-O-acylCers in the assembly of the skin lipid barrier. Ultrastructural studies of skin samples from neonatal Pnpla1+/+ and Pnpla1-/- mice showed that the linoleate moiety in ω-O-acylCers is essential for lamellar pairing in lamellar bodies, as well as for stratum corneum lipid assembly into the long periodicity lamellar phase. To further study the molecular details of ω-O-acylCer deficiency on skin barrier lipid assembly, we built in vitro lipid models composed of major stratum corneum lipid subclasses containing either ω-O-acylCer (healthy skin model), ω-OHCer (Pnpla1-/- model), or combination of the two. X-ray diffraction, infrared spectroscopy, and permeability studies indicated that ω-OHCers could not substitute for ω-O-acylCers, although in favorable conditions, they form a medium lamellar phase with a 10.8 nm-repeat distance and permeability barrier properties similar to long periodicity lamellar phase. In the absence of ω-O-acylCers, skin lipids were prone to separation into two phases with diminished barrier properties. The models combining ω-OHCers with ω-O-acylCers indicated that accumulation of ω-OHCers does not prevent ω-O-acylCer-driven lamellar stacking. These data suggest that ω-O-acylCer supplementation may be a viable therapeutic option in patients with PNPLA1 deficiency.


Assuntos
Ceramidas , Pele , Aciltransferases , Animais , Ceramidas/química , Epiderme , Ictiose , Ácido Linoleico , Lipase , Camundongos
2.
J Am Chem Soc ; 144(14): 6237-6250, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35362954

RESUMO

Chronically elevated circulating fatty acid levels promote lipid accumulation in nonadipose tissues and cause lipotoxicity. Adipose triglyceride lipase (ATGL) critically determines the release of fatty acids from white adipose tissue, and accumulating evidence suggests that inactivation of ATGL has beneficial effects on lipotoxicity-driven disorders including insulin resistance, steatohepatitis, and heart disease, classifying ATGL as a promising drug target. Here, we report on the development and biological characterization of the first small-molecule inhibitor of human ATGL. This inhibitor, designated NG-497, selectively inactivates human and nonhuman primate ATGL but not structurally and functionally related lipid hydrolases. We demonstrate that NG-497 abolishes lipolysis in human adipocytes in a dose-dependent and reversible manner. The combined analysis of mouse- and human-selective inhibitors, chimeric ATGL proteins, and homology models revealed detailed insights into enzyme-inhibitor interactions. NG-497 binds ATGL within a hydrophobic cavity near the active site. Therein, three amino acid residues determine inhibitor efficacy and species selectivity and thus provide the molecular scaffold for selective inhibition.


Assuntos
Aciltransferases/antagonistas & inibidores , Adipócitos , Ácidos Graxos/metabolismo , Lipólise , Aciltransferases/metabolismo , Adipócitos/metabolismo , Animais , Humanos , Lipólise/fisiologia , Camundongos
3.
Am J Pathol ; 191(5): 921-929, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33607042

RESUMO

Loss-of-function mutations in arachidonate lipoxygenase 12B (ALOX12B) are an important cause of autosomal recessive congenital ichthyosis (ARCI). 12R-lipoxygenase (12R-LOX), the protein product of ALOX12B, has been proposed to covalently bind the corneocyte lipid envelope (CLE) to the proteinaceous corneocyte envelope, thereby providing a scaffold for the assembly of barrier-providing, mature lipid lamellae. To test this hypothesis, an in-depth ultrastructural examination of CLEs was performed in ALOX12B-/- human and Alox12b-/- mouse epidermis, extracting samples with pyridine to distinguish covalently attached CLEs from unbound (ie, noncovalently bound) CLEs. ALOX12B--/- stratum corneum contained abundant pyridine-extractable (ie, unbound) CLEs, compared with normal stratum corneum. These unbound CLEs were associated with defective post-secretory lipid processing, and were specific to 12R-LOX deficiency, because they were not observed with deficiency of the related ARCI-associated proteins, patatin-like phospholipase 1 (Pnpla1) or abhydrolase domain containing 5 (Abhd5). These results suggest that 12R-LOX contributes specifically to CLE-corneocyte envelope cross-linking, which appears to be a prerequisite for post-secretory lipid processing, and provide insights into the pathogenesis of 12R-LOX deficiency in this subtype of ARCI, as well as other conditions that display a defective CLE.


Assuntos
Araquidonato 12-Lipoxigenase/genética , Ictiose/diagnóstico por imagem , Metabolismo dos Lipídeos , Proteínas/metabolismo , Animais , Araquidonato 12-Lipoxigenase/deficiência , Araquidonato 12-Lipoxigenase/metabolismo , Epiderme/ultraestrutura , Feminino , Humanos , Queratinócitos/ultraestrutura , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mutação , Piridinas/metabolismo , Pele/ultraestrutura
4.
J Lipid Res ; 62: 100075, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33872605

RESUMO

Carboxylesterase 2 (CES2/Ces2) proteins exert established roles in (pro)drug metabolism. Recently, human and murine CES2/Ces2c have been discovered as triglyceride (TG) hydrolases implicated in the development of obesity and fatty liver disease. The murine Ces2 family consists of seven homologous genes as opposed to a single CES2 gene in humans. However, the mechanistic role of Ces2 protein family members is not completely understood. In this study, we examined activities of all Ces2 members toward TGs, diglycerides (DGs), and monoglycerides (MGs) as the substrate. Besides CES2/Ces2c, we measured significant TG hydrolytic activities for Ces2a, Ces2b, and Ces2e. Notably, these Ces2 members and CES2 efficiently hydrolyzed DGs and MGs, and their activities even surpassed those measured for TG hydrolysis. The localization of CES2/Ces2c proteins at the ER may implicate a role of these lipases in lipid signaling pathways. We found divergent expression of Ces2 genes in the liver and intestine of mice on a high-fat diet, which could relate to changes in lipid signaling. Finally, we demonstrate reduced CES2 expression in the colon of patients with inflammatory bowel disease and a similar decline in Ces2 expression in the colon of a murine colitis model. Together, these results demonstrate that CES2/Ces2 members are highly efficient DG and MG hydrolases that may play an important role in liver and gut lipid signaling.


Assuntos
Monoacilglicerol Lipases
5.
J Lipid Res ; 59(12): 2360-2367, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30361410

RESUMO

Mutations in the genes coding for patatin-like phospholipase domain-containing 1 (PNPLA1) and α/ß-hydrolase domain-containing 5 (ABHD5), also known as comparative gene identification 58, are causative for ichthyosis, a severe skin barrier disorder. Individuals with mutations in either of these genes show a defect in epidermal ω-O-acylceramide (AcylCer) biosynthesis, suggesting that PNPLA1 and ABHD5 act in the same metabolic pathway. In this report, we identified ABHD5 as a coactivator of PNPLA1 that stimulates the esterification of ω-hydroxy ceramides with linoleic acid for AcylCer biosynthesis. ABHD5 interacts with PNPLA1 and recruits the enzyme to its putative triacylglycerol substrate onto cytosolic lipid droplets. Conversely, alleles of ABHD5 carrying point mutations associated with ichthyosis in humans failed to accelerate PNPLA1-mediated AcylCer biosynthesis. Our findings establish an important biochemical function of ABHD5 in interacting with PNPLA1 to synthesize crucial epidermal lipids, emphasizing the significance of these proteins in the formation of a functional skin permeability barrier.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Ceramidas/metabolismo , Epiderme/metabolismo , Pele/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Alelos , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Lipase/genética , Lipase/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Confocal , Permeabilidade , Ligação Proteica , Esfingosina N-Aciltransferase/metabolismo
6.
FASEB J ; 31(9): 4088-4103, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28559441

RESUMO

Adipocyte plasma membrane-associated protein (APMAP) has been described as an adipogenic factor in 3T3-L1 cells with unknown biochemical function; we therefore aimed to investigate the physiologic function of APMAP in vivo We generated Apmap-knockout mice and challenged them with an obesogenic diet to investigate their metabolic phenotype. We identified a novel truncated adipocyte-specific isoform of APMAP in mice that is produced by alternative transcription. Mice lacking the full-length APMAP protein, the only isoform that is expressed in humans, have an improved metabolic phenotype upon diet-induced obesity, indicated by enhanced insulin sensitivity, preserved glucose tolerance, increased respiratory exchange ratio, decreased inflammatory marker gene expression, and reduced adipocyte size. At the molecular level, APMAP interacts with the extracellular collagen cross-linking matrix proteins lysyl oxidase-like 1 and 3. On a high-fat diet, the expression of lysyl oxidase-like 1 and 3 is strongly decreased in Apmap-knockout mice, paralleled by reduced expression of profibrotic collagens and total collagen content in epididymal white adipose tissue, indicating decreased fibrotic potential. Together, our data suggest that APMAP is a novel regulator of extracellular matrix components, and establish that APMAP is a potential target to mitigate obesity-associated insulin resistance.-Pessentheiner, A. R., Huber, K., Pelzmann, H. J., Prokesch, A., Radner, F. P. W., Wolinski, H., Lindroos-Christensen, J., Hoefler, G., Rülicke, T., Birner-Gruenberger, R., Bilban, M., Bogner-Strauss, J. G. APMAP interacts with lysyl oxidase-like proteins, and disruption of Apmap leads to beneficial visceral adipose tissue expansion.


Assuntos
Aminoácido Oxirredutases/metabolismo , Regulação da Expressão Gênica/fisiologia , Gordura Intra-Abdominal/metabolismo , Glicoproteínas de Membrana/metabolismo , Adipócitos/citologia , Adipócitos/fisiologia , Aminoácido Oxirredutases/genética , Animais , Tamanho Celular , Dieta Hiperlipídica , Regulação para Baixo , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Obesidade , Isoformas de Proteínas
7.
J Biol Chem ; 291(2): 913-23, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26565024

RESUMO

Monoglyceride lipase (MGL) is required for efficient hydrolysis of the endocannabinoid 2-arachidonoylglyerol (2-AG) in the brain generating arachidonic acid (AA) and glycerol. This metabolic function makes MGL an interesting target for the treatment of neuroinflammation, since 2-AG exhibits anti-inflammatory properties and AA is a precursor for pro-inflammatory prostaglandins. Astrocytes are an important source of AA and 2-AG, and highly express MGL. In the present study, we dissected the distinct contribution of MGL in astrocytes on brain 2-AG and AA metabolism by generating a mouse model with genetic deletion of MGL specifically in astrocytes (MKO(GFAP)). MKO(GFAP) mice exhibit moderately increased 2-AG and reduced AA levels in brain. Minor accumulation of 2-AG in the brain of MKO(GFAP) mice does not cause cannabinoid receptor desensitization as previously observed in mice globally lacking MGL. Importantly, MKO(GFAP) mice exhibit reduced brain prostaglandin E2 and pro-inflammatory cytokine levels upon peripheral lipopolysaccharide (LPS) administration. These observations indicate that MGL-mediated degradation of 2-AG in astrocytes provides AA for prostaglandin synthesis promoting LPS-induced neuroinflammation. The beneficial effect of astrocyte-specific MGL-deficiency is not fully abrogated by the inverse cannabinoid receptor 1 agonist SR141716 (Rimonabant) suggesting that the anti-inflammatory effects are rather caused by reduced prostaglandin synthesis than by activation of cannabinoid receptors. In conclusion, our data demonstrate that MGL in astrocytes is an important regulator of 2-AG levels, AA availability, and neuroinflammation.


Assuntos
Astrócitos/enzimologia , Deleção de Genes , Inflamação/enzimologia , Inflamação/patologia , Monoacilglicerol Lipases/metabolismo , Sistema Nervoso/enzimologia , Sistema Nervoso/patologia , Animais , Ácidos Araquidônicos/metabolismo , Astrócitos/patologia , Comportamento Animal , Encéfalo/enzimologia , Citocinas/metabolismo , Endocanabinoides/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Glicerídeos/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Especificidade de Órgãos , Receptor CB1 de Canabinoide/metabolismo
8.
J Biol Chem ; 290(43): 26141-50, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26350455

RESUMO

The anabolism and catabolism of myocardial triacylglycerol (TAG) stores are important processes for normal cardiac function. TAG synthesis detoxifies and stockpiles fatty acids to prevent lipotoxicity, whereas TAG hydrolysis (lipolysis) remobilizes fatty acids from endogenous storage pools as energy substrates, signaling molecules, or precursors for complex lipids. This study focused on the role of G0/G1 switch 2 (G0S2) protein, which was previously shown to inhibit the principal TAG hydrolase adipose triglyceride lipase (ATGL), in the regulation of cardiac lipolysis. Using wild-type and mutant mice, we show the following: (i) G0S2 is expressed in the heart and regulated by the nutritional status with highest expression levels after re-feeding. (ii) Cardiac-specific overexpression of G0S2 inhibits cardiac lipolysis by direct protein-protein interaction with ATGL. This leads to severe cardiac steatosis. The steatotic hearts caused by G0S2 overexpression are less prone to fibrotic remodeling or cardiac dysfunction than hearts with a lipolytic defect due to ATGL deficiency. (iii) Conversely to the phenotype of transgenic mice, G0S2 deficiency results in a de-repression of cardiac lipolysis and decreased cardiac TAG content. We conclude that G0S2 acts as a potent ATGL inhibitor in the heart modulating cardiac substrate utilization by regulating cardiac lipolysis.


Assuntos
Proteínas de Ciclo Celular/genética , Fase G1/genética , Lipólise/genética , Miocárdio/metabolismo , Fase de Repouso do Ciclo Celular/genética , Triglicerídeos/metabolismo , Animais , Linhagem Celular , Testes de Função Cardíaca , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
PLoS Genet ; 9(6): e1003536, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23754960

RESUMO

Autosomal recessive congenital ichthyosis (ARCI) is a rare genetic disorder of the skin characterized by abnormal desquamation over the whole body. In this study we report four patients from three consanguineous Tunisian families with skin, eye, heart, and skeletal anomalies, who harbor a homozygous contiguous gene deletion syndrome on chromosome 15q26.3. Genome-wide SNP-genotyping revealed a homozygous region in all affected individuals, including the same microdeletion that partially affects two coding genes (ADAMTS17, CERS3) and abolishes a sequence for a long non-coding RNA (FLJ42289). Whereas mutations in ADAMTS17 have recently been identified in autosomal recessive Weill-Marchesani-like syndrome in humans and dogs presenting with ophthalmologic, cardiac, and skeletal abnormalities, no disease associations have been described for CERS3 (ceramide synthase 3) and FLJ42289 so far. However, analysis of additional patients with non-syndromic ARCI revealed a splice site mutation in CERS3 indicating that a defect in ceramide synthesis is causative for the present skin phenotype of our patients. Functional analysis of patient skin and in vitro differentiated keratinocytes demonstrated that mutations in CERS3 lead to a disturbed sphingolipid profile with reduced levels of epidermis-specific very long-chain ceramides that interferes with epidermal differentiation. Taken together, these data present a novel pathway involved in ARCI development and, moreover, provide the first evidence that CERS3 plays an essential role in human sphingolipid metabolism for the maintenance of epidermal lipid homeostasis.


Assuntos
Proteínas ADAM/genética , Estudo de Associação Genômica Ampla , Eritrodermia Ictiosiforme Congênita/genética , Esfingosina N-Aciltransferase/genética , Proteínas ADAMTS , Animais , Genes Recessivos , Homozigoto , Humanos , Mutação , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único , Sítios de Splice de RNA/genética , RNA Longo não Codificante/genética , Esfingolipídeos/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Tunísia
10.
Biochim Biophys Acta ; 1841(3): 409-15, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23928127

RESUMO

Survival in a terrestrial, dry environment necessitates a permeability barrier for regulated permeation of water and electrolytes in the cornified layer of the skin (the stratum corneum) to minimize desiccation of the body. This barrier is formed during cornification and involves a cross-linking of corneocyte proteins as well as an extensive remodeling of lipids. The cleavage of precursor lipids from lamellar bodies by various hydrolytic enzymes generates ceramides, cholesterol, and non-esterified fatty acids for the extracellular lipid lamellae in the stratum corneum. However, the important role of epidermal triacylglycerol (TAG) metabolism during formation of a functional permeability barrier in the skin was only recently discovered. Humans with mutations in the ABHD5/CGI-58 (α/ß hydrolase domain containing protein 5, also known as comparative gene identification-58, CGI-58) gene suffer from a defect in TAG catabolism that causes neutral lipid storage disease with ichthyosis. In addition, mice with deficiencies in genes involved in TAG catabolism (Abhd5/Cgi-58 knock-out mice) or TAG synthesis (acyl-CoA:diacylglycerol acyltransferase-2, Dgat2 knock-out mice) also develop severe skin permeability barrier dysfunctions and die soon after birth due to increased dehydration. As a result of these defects in epidermal TAG metabolism, humans and mice lack ω-(O)-acylceramides, which leads to malformation of the cornified lipid envelope of the skin. In healthy skin, this epidermal structure provides an interface for the linkage of lamellar membranes with corneocyte proteins to maintain permeability barrier homeostasis. This review focuses on recent advances in the understanding of biochemical mechanisms involved in epidermal neutral lipid metabolism and the generation of a functional skin permeability barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Triglicerídeos/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Animais , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Epiderme , Humanos , Eritrodermia Ictiosiforme Congênita/genética , Eritrodermia Ictiosiforme Congênita/metabolismo , Eritrodermia Ictiosiforme Congênita/patologia , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Erros Inatos do Metabolismo Lipídico/patologia , Camundongos , Camundongos Knockout , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Permeabilidade , Dermatopatias Metabólicas/genética , Dermatopatias Metabólicas/metabolismo , Dermatopatias Metabólicas/patologia , Triglicerídeos/genética
11.
J Hepatol ; 63(2): 437-45, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25733154

RESUMO

BACKGROUND & AIMS: Adipose tissue (AT)-derived fatty acids (FAs) are utilized for hepatic triacylglycerol (TG) generation upon fasting. However, their potential impact as signaling molecules is not established. Herein we examined the role of exogenous AT-derived FAs in the regulation of hepatic gene expression by investigating mice with a defect in AT-derived FA supply to the liver. METHODS: Plasma FA levels, tissue TG hydrolytic activities and lipid content were determined in mice lacking the lipase co-activator comparative gene identification-58 (CGI-58) selectively in AT (CGI-58-ATko) applying standard protocols. Hepatic expression of lipases, FA oxidative genes, transcription factors, ER stress markers, hormones and cytokines were determined by qRT-PCR, Western blotting and ELISA. RESULTS: Impaired AT-derived FA supply upon fasting of CGI-58-ATko mice causes a marked defect in liver PPARα-signaling and nuclear CREBH translocation. This severely reduced the expression of respective target genes such as the ATGL inhibitor G0/G1 switch gene-2 (G0S2) and the endocrine metabolic regulator FGF21. These changes could be reversed by lipid administration and raising plasma FA levels. Impaired AT-lipolysis failed to induce hepatic G0S2 expression in fasted CGI-58-ATko mice leading to enhanced ATGL-mediated TG-breakdown strongly reducing hepatic TG deposition. On high fat diet, impaired AT-lipolysis counteracts hepatic TG accumulation and liver stress linked to improved systemic insulin sensitivity. CONCLUSIONS: AT-derived FAs are a critical regulator of hepatic fasting gene expression required for the induction of G0S2-expression in the liver to control hepatic TG-breakdown. Interfering with AT-lipolysis or hepatic G0S2 expression represents an effective strategy for the treatment of hepatic steatosis.


Assuntos
Tecido Adiposo/metabolismo , Jejum/metabolismo , Ácidos Graxos/metabolismo , Fígado Gorduroso/genética , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica , Fígado/metabolismo , Animais , Western Blotting , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fatores de Crescimento de Fibroblastos/biossíntese , Genes de Troca , Fígado/ultraestrutura , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real
12.
J Biol Chem ; 288(14): 9892-9904, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23413028

RESUMO

Efficient catabolism of cellular triacylglycerol (TG) stores requires the TG hydrolytic activity of adipose triglyceride lipase (ATGL). The presence of comparative gene identification-58 (CGI-58) strongly increased ATGL-mediated TG catabolism in cell culture experiments. Mutations in the genes coding for ATGL or CGI-58 in humans cause neutral lipid storage disease characterized by TG accumulation in multiple tissues. ATGL gene mutations cause a severe phenotype especially in cardiac muscle leading to cardiomyopathy that can be lethal. In contrast, CGI-58 gene mutations provoke severe ichthyosis and hepatosteatosis in humans and mice, whereas the role of CGI-58 in muscle energy metabolism is less understood. Here we show that mice lacking CGI-58 exclusively in muscle (CGI-58KOM) developed severe cardiac steatosis and cardiomyopathy linked to impaired TG catabolism and mitochondrial fatty acid oxidation. The marked increase in ATGL protein levels in cardiac muscle of CGI-58KOM mice was unable to compensate the lack of CGI-58. The addition of recombinant CGI-58 to cardiac lysates of CGI-58KOM mice completely reconstituted TG hydrolytic activities. In skeletal muscle, the lack of CGI-58 similarly provoked TG accumulation. The addition of recombinant CGI-58 increased TG hydrolytic activities in control and CGI-58KOM tissue lysates, elucidating the limiting role of CGI-58 in skeletal muscle TG catabolism. Finally, muscle CGI-58 deficiency affected whole body energy homeostasis, which is caused by impaired muscle TG catabolism and increased cardiac glucose uptake. In summary, this study demonstrates that functional muscle lipolysis depends on both CGI-58 and ATGL.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Lipase/metabolismo , Lipólise/fisiologia , Triglicerídeos/metabolismo , Tecido Adiposo/enzimologia , Animais , Cardiomiopatias/metabolismo , Ecocardiografia/métodos , Feminino , Glucose/metabolismo , Homeostase , Hidrólise , Metabolismo dos Lipídeos , Lipídeos/química , Masculino , Camundongos , Mitocôndrias/metabolismo , Músculos/enzimologia , Músculos/metabolismo , Miocárdio/metabolismo , Consumo de Oxigênio
13.
J Lipid Res ; 53(11): 2307-17, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22891293

RESUMO

The hydrolysis of triglycerides in adipocytes, termed lipolysis, provides free fatty acids as energy fuel. Murine lipolysis largely depends on the activity of adipose triglyceride lipase (ATGL), which is regulated by two proteins annotated as comparative gene identification-58 (CGI-58) and G0/G1 switch gene-2 (G0S2). CGI-58 activates and G0S2 inhibits ATGL activity. In contrast to mice, the functional role of G0S2 in human adipocyte lipolysis is poorly characterized. Here we show that overexpression or silencing of G0S2 in human SGBS adipocytes decreases and increases lipolysis, respectively. Human G0S2 is upregulated during adipocyte differentiation and inhibits ATGL activity in a dose-dependent manner. Interestingly, C-terminally truncated ATGL mutants, which fail to localize to lipid droplets, translocate to the lipid droplet upon coexpression with G0S2, suggesting that G0S2 anchors ATGL to lipid droplets independent of ATGL's C-terminal lipid binding domain. Taken together, our results indicate that G0S2 also regulates human lipolysis by affecting enzyme activity and intracellular localization of ATGL. Increased lipolysis is known to contribute to the pathogenesis of insulin resistance, and G0S2 expression has been shown to be reduced in poorly controlled type 2 diabetic patients. Our data indicate that downregulation of G0S2 in adipose tissue could represent one of the underlying causes leading to increased lipolysis in the insulin-resistant state.


Assuntos
Adipócitos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cisteína Endopeptidases/metabolismo , Lipase/metabolismo , Lipólise/fisiologia , Células 3T3-L1 , Animais , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Células Cultivadas , Cisteína Endopeptidases/genética , Humanos , Immunoblotting , Técnicas In Vitro , Lipase/genética , Lipólise/genética , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida
14.
J Biol Chem ; 286(20): 17467-77, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454566

RESUMO

Monoglyceride lipase (MGL) influences energy metabolism by at least two mechanisms. First, it hydrolyzes monoacylglycerols (MG) into fatty acids and glycerol. These products can be used for energy production or synthetic reactions. Second, MGL degrades 2-arachidonoyl glycerol (2-AG), the most abundant endogenous ligand of cannabinoid receptors (CBR). Activation of CBR affects energy homeostasis by central orexigenic stimuli, by promoting lipid storage, and by reducing energy expenditure. To characterize the metabolic role of MGL in vivo, we generated an MGL-deficient mouse model (MGL-ko). These mice exhibit a reduction in MG hydrolase activity and a concomitant increase in MG levels in adipose tissue, brain, and liver. In adipose tissue, the lack of MGL activity is partially compensated by hormone-sensitive lipase. Nonetheless, fasted MGL-ko mice exhibit reduced plasma glycerol and triacylglycerol, as well as liver triacylglycerol levels indicative for impaired lipolysis. Despite a strong elevation of 2-AG levels, MGL-ko mice exhibit normal food intake, fat mass, and energy expenditure. Yet mice lacking MGL show a pharmacological tolerance to the CBR agonist CP 55,940 suggesting that the elevated 2-AG levels are functionally antagonized by desensitization of CBR. Interestingly, however, MGL-ko mice receiving a high fat diet exhibit significantly improved glucose tolerance and insulin sensitivity in comparison with wild-type controls despite equal weight gain. In conclusion, our observations implicate that MGL deficiency impairs lipolysis and attenuates diet-induced insulin resistance. Defective degradation of 2-AG does not provoke cannabinoid-like effects on feeding behavior, lipid storage, and energy expenditure, which may be explained by desensitization of CBR.


Assuntos
Tecido Adiposo/enzimologia , Dieta , Resistência à Insulina , Lipólise/fisiologia , Monoacilglicerol Lipases/metabolismo , Tecido Adiposo/metabolismo , Animais , Ácidos Araquidônicos/genética , Ácidos Araquidônicos/metabolismo , Endocanabinoides , Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Glicerídeos/genética , Glicerídeos/metabolismo , Glicerol/sangue , Camundongos , Camundongos Knockout , Monoacilglicerol Lipases/genética , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo , Triglicerídeos/sangue , Triglicerídeos/genética
15.
Metabolites ; 12(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36355098

RESUMO

The α/ß-Hydrolase domain-containing protein 5 (ABHD5; also known as comparative gene identification-58, or CGI-58) is the causative gene of the Chanarin-Dorfman syndrome (CDS), a disorder mainly characterized by systemic triacylglycerol accumulation and a severe defect in skin barrier function. The clinical phenotype of CDS patients and the characterization of global and tissue-specific ABHD5-deficient mouse strains have demonstrated that ABHD5 is a crucial regulator of lipid and energy homeostasis in various tissues. Although ABHD5 lacks intrinsic hydrolase activity, it functions as a co-activating enzyme of the patatin-like phospholipase domain-containing (PNPLA) protein family that is involved in triacylglycerol and glycerophospholipid, as well as sphingolipid and retinyl ester metabolism. Moreover, ABHD5 interacts with perilipins (PLINs) and fatty acid-binding proteins (FABPs), which are important regulators of lipid homeostasis in adipose and non-adipose tissues. This review focuses on the multifaceted role of ABHD5 in modulating the function of key enzymes in lipid metabolism.

16.
J Biol Chem ; 285(10): 7300-11, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20023287

RESUMO

Comparative gene identification-58 (CGI-58), also designated as alpha/beta-hydrolase domain containing-5 (ABHD-5), is a lipid droplet-associated protein that activates adipose triglyceride lipase (ATGL) and acylates lysophosphatidic acid. Activation of ATGL initiates the hydrolytic catabolism of cellular triacylglycerol (TG) stores to glycerol and nonesterified fatty acids. Mutations in both ATGL and CGI-58 cause "neutral lipid storage disease" characterized by massive accumulation of TG in various tissues. The analysis of CGI-58-deficient (Cgi-58(-/-)) mice, presented in this study, reveals a dual function of CGI-58 in lipid metabolism. First, systemic TG accumulation and severe hepatic steatosis in newborn Cgi-58(-/-) mice establish a limiting role for CGI-58 in ATGL-mediated TG hydrolysis and supply of nonesterified fatty acids as energy substrate. Second, a severe skin permeability barrier defect uncovers an essential ATGL-independent role of CGI-58 in skin lipid metabolism. The neonatal lethal skin barrier defect is linked to an impaired hydrolysis of epidermal TG. As a consequence, sequestration of fatty acids in TG prevents the synthesis of acylceramides, which are essential lipid precursors for the formation of a functional skin permeability barrier. This mechanism may also underlie the pathogenesis of ichthyosis in neutral lipid storage disease patients lacking functional CGI-58.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase , Fígado Gorduroso/metabolismo , Retardo do Crescimento Fetal/fisiopatologia , Pele , Triglicerídeos/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Animais , Animais Recém-Nascidos , Animais Lactentes/fisiologia , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Fígado Gorduroso/genética , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Ictiose/genética , Ictiose/metabolismo , Ictiose/patologia , Lipase/genética , Lipase/metabolismo , Fígado/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Permeabilidade , Pele/química , Pele/patologia , Pele/fisiopatologia , Síndrome
17.
JID Innov ; 1(3): 100033, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34909730

RESUMO

Alterations of the lipid profile of the stratum corneum have an important role in the pathogenesis of atopic dermatitis (AD) because they contribute to epidermal barrier impairment. However, they have not previously been envisioned as a cellular response to altered metabolic requirements in AD epidermis. In this study, we report that the lipid composition in the epidermis of flaky tail, that is, ft/ft mice mimics that of human lesional AD (ADL) epidermis, both showing a shift toward shorter lipid species. The amounts of C24 and C26 free fatty acids and C24 and C26 ceramides-oxidized exclusively in peroxisomes-were reduced in the epidermis of ft/ft mice despite increased lipid synthesis, similar to that seen in human ADL edpidermis. Increased ACOX1 protein and activity in granular keratinocytes of ft/ft epidermis, altered lipid profile in human epidermal equivalents overexpressing ACOX1, and increased ACOX1 immunostaining in skin biopsies from patients with ADL suggest that peroxisomal ß-oxidation significantly contributes to lipid signature in ADL epidermis. Moreover, we show that increased anaerobic glycolysis in ft/ft mouse epidermis is essential for keratinocyte proliferation and adenosine triphosphate synthesis but does not contribute to local inflammation. Thus, this work evidenced a metabolic shift toward enhanced peroxisomal ß-oxidation and anaerobic glycolysis in ADL epidermis.

18.
Commun Biol ; 4(1): 323, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692445

RESUMO

Modulation of adipocyte lipolysis represents an attractive approach to treat metabolic diseases. Lipolysis mainly depends on two enzymes: adipose triglyceride lipase and hormone-sensitive lipase (HSL). Here, we investigated the short- and long-term impact of adipocyte HSL on energy homeostasis using adipocyte-specific HSL knockout (AHKO) mice. AHKO mice fed high-fat-diet (HFD) progressively developed lipodystrophy accompanied by excessive hepatic lipid accumulation. The increased hepatic triglyceride deposition was due to induced de novo lipogenesis driven by increased fatty acid release from adipose tissue during refeeding related to defective insulin signaling in adipose tissue. Remarkably, the fatty liver of HFD-fed AHKO mice reversed with advanced age. The reversal of fatty liver coincided with a pronounced lipodystrophic phenotype leading to blunted lipolytic activity in adipose tissue. Overall, we demonstrate that impaired adipocyte HSL-mediated lipolysis affects systemic energy homeostasis in AHKO mice, whereby with older age, these mice reverse their fatty liver despite advanced lipodystrophy.


Assuntos
Adipócitos/enzimologia , Metabolismo Energético , Fígado Gorduroso/enzimologia , Lipodistrofia/enzimologia , Lipólise , Fígado/metabolismo , Esterol Esterase/deficiência , Adipócitos/patologia , Fatores Etários , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Insulina/metabolismo , Lipodistrofia/genética , Lipodistrofia/patologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama/metabolismo , Esterol Esterase/genética , Fatores de Tempo
19.
J Lipid Res ; 51(3): 490-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19965578

RESUMO

FAs are mobilized from triglyceride (TG) stores during exercise to supply the working muscle with energy. Mice deficient for adipose triglyceride lipase (ATGL-ko) exhibit defective lipolysis and accumulate TG in adipose tissue and muscle, suggesting that ATGL deficiency affects energy availability and substrate utilization in working muscle. In this study, we investigated the effect of moderate treadmill exercise on blood energy metabolites and liver glycogen stores in mice lacking ATGL. Because ATGL-ko mice exhibit massive accumulation of TG in the heart and cardiomyopathy, we also investigated a mouse model lacking ATGL in all tissues except cardiac muscle (ATGL-ko/CM). In contrast to ATGL-ko mice, these mice did not accumulate TG in the heart and had normal life expectancy. Exercise experiments revealed that ATGL-ko and ATGL-ko/CM mice are unable to increase circulating FA levels during exercise. The reduced availability of FA for energy conversion led to rapid depletion of liver glycogen stores and hypoglycemia. Together, our studies suggest that ATGL-ko mice cannot adjust circulating FA levels to the increased energy requirements of the working muscle, resulting in an increased use of carbohydrates for energy conversion. Thus, ATGL activity is required for proper energy supply of the skeletal muscle during exercise.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Ácidos Graxos/metabolismo , Músculos/metabolismo , Animais , Carboidratos/sangue , Hidrolases de Éster Carboxílico/deficiência , Hidrolases de Éster Carboxílico/genética , Metabolismo Energético , Feminino , Técnicas de Inativação de Genes , Glicogênio/metabolismo , Lipase , Lipídeos/sangue , Fígado/metabolismo , Locomoção , Masculino , Camundongos , Músculos/citologia , Músculos/fisiologia , Mutação , Condicionamento Físico Animal , Descanso
20.
J Invest Dermatol ; 139(10): 2154-2163.e5, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31082376

RESUMO

Trichilemmal cysts are common hair follicle-derived intradermal cysts. The trait shows an autosomal dominant mode of transmission with incomplete penetrance. Here, we describe the pathogenetic mechanism for the development of hereditary trichilemmal cysts. By whole-exome sequencing of DNA from the blood samples of 5 affected individuals and subsequent Sanger sequencing of a family cohort including 35 affected individuals, this study identified a combination of the Phospholipase C Delta 1 germline variants c.903A>G, p.(Pro301Pro) and c.1379C>T, p.(Ser460Leu) as a high-risk factor for trichilemmal cyst development. Allele-specific PCRs and cloning experiments showed that these two variants are present on the same allele. The analysis of tissue from several cysts revealed that an additional somatic Phospholipase C Delta 1 mutation on the same allele is required for cyst formation. In two different functional in vitro assays, this study showed that the protein function of the cyst-specific 1-phosphatidylinositol 4, 5-bisphosphate phosphodiesterase delta-1 protein variant is modified. This pathologic mechanism defines a monoallelic model of the two-hit mechanism proposed for tumor development and other hereditary cyst diseases.


Assuntos
Cisto Epidérmico/genética , Cisto Epidérmico/patologia , Predisposição Genética para Doença , Fosfolipase C delta/genética , Dermatopatias/genética , Dermatopatias/patologia , Alelos , Biópsia por Agulha , Feminino , Mutação em Linhagem Germinativa , Folículo Piloso/patologia , Humanos , Imuno-Histoquímica , Masculino , Linhagem , Reação em Cadeia da Polimerase em Tempo Real/métodos , Couro Cabeludo/patologia , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA