Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(22): 5577-5592.e18, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34644529

RESUMO

Intratumoral heterogeneity is a critical frontier in understanding how the tumor microenvironment (TME) propels malignant progression. Here, we deconvolute the human pancreatic TME through large-scale integration of histology-guided regional multiOMICs with clinical data and patient-derived preclinical models. We discover "subTMEs," histologically definable tissue states anchored in fibroblast plasticity, with regional relationships to tumor immunity, subtypes, differentiation, and treatment response. "Reactive" subTMEs rich in complex but functionally coordinated fibroblast communities were immune hot and inhabited by aggressive tumor cell phenotypes. The matrix-rich "deserted" subTMEs harbored fewer activated fibroblasts and tumor-suppressive features yet were markedly chemoprotective and enriched upon chemotherapy. SubTMEs originated in fibroblast differentiation trajectories, and transitory states were notable both in single-cell transcriptomics and in situ. The intratumoral co-occurrence of subTMEs produced patient-specific phenotypic and computationally predictable heterogeneity tightly linked to malignant biology. Therefore, heterogeneity within the plentiful, notorious pancreatic TME is not random but marks fundamental tissue organizational units.


Assuntos
Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Adenocarcinoma/genética , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Diferenciação Celular , Proliferação de Células , Epitélio/patologia , Matriz Extracelular/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Fenótipo , Células Estromais/patologia , Análise de Sobrevida , Microambiente Tumoral/imunologia
2.
Nat Chem Biol ; 16(5): 577-586, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32094923

RESUMO

Receptor tyrosine kinases (RTKs) are transmembrane receptors of great clinical interest due to their role in disease. Historically, therapeutics targeting RTKs have been identified using in vitro kinase assays. Due to frequent development of drug resistance, however, there is a need to identify more diverse compounds that inhibit mutated but not wild-type RTKs. Here, we describe MaMTH-DS (mammalian membrane two-hybrid drug screening), a live-cell platform for high-throughput identification of small molecules targeting functional protein-protein interactions of RTKs. We applied MaMTH-DS to an oncogenic epidermal growth factor receptor (EGFR) mutant resistant to the latest generation of clinically approved tyrosine kinase inhibitors (TKIs). We identified four mutant-specific compounds, including two that would not have been detected by conventional in vitro kinase assays. One of these targets mutant EGFR via a new mechanism of action, distinct from classical TKI inhibition. Our results demonstrate how MaMTH-DS is a powerful complement to traditional drug screening approaches.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Inibidores de Proteínas Quinases/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular , Linhagem Celular Tumoral , DNA Nucleotidiltransferases/genética , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Genes Reporter , Humanos , Luciferases/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Fosforilação/efeitos dos fármacos , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/farmacologia , Estaurosporina/análogos & derivados , Estaurosporina/farmacologia
3.
Adv Funct Mater ; 30(48)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33692660

RESUMO

Tumor progression relies heavily on the interaction between the neoplastic epithelial cells and their surrounding stromal partners. This cell cross-talk affects stromal development, and ultimately the heterogeneity impacts drug efflux and efficacy. To mimic this evolving paradigm, we have micro-engineered a three-dimensional (3D) vascularized pancreatic adenocarcinoma tissue in a tri-culture system composed of patient derived pancreatic organoids, primary human fibroblasts and endothelial cells on a perfusable InVADE platform situated in a 96-well plate. Uniquely, through synergistic engineering we combined the benefits of cellular fidelity of patient tumor derived organoids with the addressability of a plastic organ-on-a-chip platform. Validation of this platform included demonstrating the growth of pancreatic tumor organoids by monitoring the change in metabolic activity of the tissue. Investigation of tumor microenvironmental behavior highlighted the role of fibroblasts in symbiosis with patient organoid cells, resulting in a six-fold increase of collagen deposition and a corresponding increase in tissue stiffness in comparison to fibroblast free controls. The value of a perfusable vascular network was evident in drug screening, as perfusion of gemcitabine into a stiffened matrix did not show the dose-dependent effects on tumor viability as those under static conditions. These findings demonstrate the importance of studying the dynamic synergistic relationship between patient cells with stromal fibroblasts, in a 3D perfused vascular network, to accurately understand and recapitulate the tumor microenvironment.

4.
PLoS Comput Biol ; 15(1): e1006596, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30629588

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis among solid malignancies and improved therapeutic strategies are needed to improve outcomes. Patient-derived xenografts (PDX) and patient-derived organoids (PDO) serve as promising tools to identify new drugs with therapeutic potential in PDAC. For these preclinical disease models to be effective, they should both recapitulate the molecular heterogeneity of PDAC and validate patient-specific therapeutic sensitivities. To date however, deep characterization of the molecular heterogeneity of PDAC PDX and PDO models and comparison with matched human tumour remains largely unaddressed at the whole genome level. We conducted a comprehensive assessment of the genetic landscape of 16 whole-genome pairs of tumours and matched PDX, from primary PDAC and liver metastasis, including a unique cohort of 5 'trios' of matched primary tumour, PDX, and PDO. We developed a pipeline to score concordance between PDAC models and their paired human tumours for genomic events, including mutations, structural variations, and copy number variations. Tumour-model comparisons of mutations displayed single-gene concordance across major PDAC driver genes, but relatively poor agreement across the greater mutational load. Genome-wide and chromosome-centric analysis of structural variation (SV) events highlights previously unrecognized concordance across chromosomes that demonstrate clustered SV events. We found that polyploidy presented a major challenge when assessing copy number changes; however, ploidy-corrected copy number states suggest good agreement between donor-model pairs. Collectively, our investigations highlight that while PDXs and PDOs may serve as tractable and transplantable systems for probing the molecular properties of PDAC, these models may best serve selective analyses across different levels of genomic complexity.


Assuntos
Carcinoma Ductal Pancreático/genética , Genoma/genética , Modelos Biológicos , Neoplasias Experimentais/genética , Neoplasias Pancreáticas/genética , Animais , Pesquisa Biomédica/normas , Humanos , Pâncreas/patologia
6.
J Am Chem Soc ; 140(13): 4473-4476, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29543440

RESUMO

Small GTPases (sGTPases) are critical switch-like regulators that mediate several important cellular functions and are often mutated in human cancers. They are activated by guanine nucleotide exchange factors (GEFs), which specifically catalyze the exchange of GTP for GDP. GEFs coordinate signaling networks in normal cells, and are frequently deregulated in cancers. sGTPase signaling pathways are complex and interconnected; however, most GEF assays do not reveal such complexity. In this Communication, we describe the development of a unique real-time NMR-based multiplexed GEF assay that employs distinct isotopic labeling schemes for each sGTPase protein to enable simultaneous observation of six proteins of interest. We monitor nucleotide exchange of KRas, Rheb, RalB, RhoA, Cdc42 and Rac1 in a single system, and assayed the activities of GEFs in lysates of cultured human cells and 3D organoids derived from pancreatic cancer patients. We observed potent activation of RhoA by lysates of HEK293a cells transfected with GEF-H1, along with weak stimulation of Rac1, which we showed is indirect. Our functional analyses of pancreatic cancer-derived organoids revealed higher GEF activity for RhoA than other sGTPases, in line with RNA-seq data indicating high expression of RhoA-specific GEFs.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Bioensaio , Fatores de Troca do Nucleotídeo Guanina/classificação , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Neoplasias Pancreáticas/patologia , Proteína rhoA de Ligação ao GTP/química
7.
Proc Natl Acad Sci U S A ; 108(17): 7160-5, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21474781

RESUMO

The tumor microenvironment strongly influences cancer development, progression, and metastasis. The role of carcinoma-associated fibroblasts (CAFs) in these processes and their clinical impact has not been studied systematically in non-small cell lung carcinoma (NSCLC). We established primary cultures of CAFs and matched normal fibroblasts (NFs) from 15 resected NSCLC. We demonstrate that CAFs have greater ability than NFs to enhance the tumorigenicity of lung cancer cell lines. Microarray gene-expression analysis of the 15 matched CAF and NF cell lines identified 46 differentially expressed genes, encoding for proteins that are significantly enriched for extracellular proteins regulated by the TGF-ß signaling pathway. We have identified a subset of 11 genes (13 probe sets) that formed a prognostic gene-expression signature, which was validated in multiple independent NSCLC microarray datasets. Functional annotation using protein-protein interaction analyses of these and published cancer stroma-associated gene-expression changes revealed prominent involvement of the focal adhesion and MAPK signaling pathways. Fourteen (30%) of the 46 genes also were differentially expressed in laser-capture-microdissected corresponding primary tumor stroma compared with the matched normal lung. Six of these 14 genes could be induced by TGF-ß1 in NF. The results establish the prognostic impact of CAF-associated gene-expression changes in NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/biossíntese , Animais , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Transformada , Intervalo Livre de Doença , Feminino , Fibroblastos/patologia , Perfilação da Expressão Gênica , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos SCID , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais , Taxa de Sobrevida
8.
PLoS One ; 19(2): e0295030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324534

RESUMO

Colorectal cancer is the third most common cancer and the second leading cause of cancer-related deaths worldwide. The centrosome is the main microtubule-organizing center in animal cells and centrosome amplification is a hallmark of cancer cells. To investigate the importance of centrosomes in colorectal cancer, we induced centrosome loss in normal and cancer human-derived colorectal organoids using centrinone B, a Polo-like kinase 4 (Plk4) inhibitor. We show that centrosome loss represses human normal colorectal organoid growth in a p53-dependent manner in accordance with previous studies in cell models. However, cancer colorectal organoid lines exhibited different sensitivities to centrosome loss independently of p53. Centrinone-induced cancer organoid growth defect/death positively correlated with a loss of function mutation in the APC gene, suggesting a causal role of the hyperactive WNT pathway. Consistent with this notion, ß-catenin inhibition using XAV939 or ICG-001 partially prevented centrinone-induced death and rescued the growth two APC-mutant organoid lines tested. Our study reveals a novel role for canonical WNT signaling in regulating centrosome loss-induced growth defect/death in a subset of APC-mutant colorectal cancer independently of the classical p53 pathway.


Assuntos
Proteína da Polipose Adenomatosa do Colo , Neoplasias Colorretais , Proteína Supressora de Tumor p53 , beta Catenina , Animais , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Centrossomo/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Pirimidinas , Sulfonas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Via de Sinalização Wnt , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo
9.
Sci Rep ; 13(1): 3334, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849518

RESUMO

Epithelial ovarian cancer is the most lethal gynecological malignancy, owing notably to its high rate of therapy-resistant recurrence in spite of good initial response to chemotherapy. Although poly(ADP-ribose) polymerase inhibitors (PARPi) have shown promise for ovarian cancer treatment, extended therapy usually leads to acquired PARPi resistance. Here we explored a novel therapeutic option to counter this phenomenon, combining PARPi and inhibitors of nicotinamide phosphoribosyltransferase (NAMPT). Cell-based models of acquired PARPi resistance were created through an in vitro selection procedure. Using resistant cells, xenograft tumors were grown in immunodeficient mice, while organoid models were generated from primary patient tumor samples. Intrinsically PARPi-resistant cell lines were also selected for analysis. Our results show that treatment with NAMPT inhibitors effectively sensitized all in vitro models to PARPi. Adding nicotinamide mononucleotide, the resulting NAMPT metabolite, abrogated the therapy-induced cell growth inhibition, demonstrating the specificity of the synergy. Treatment with olaparib (PARPi) and daporinad (NAMPT inhibitor) depleted intracellular NAD+ , induced double-strand DNA breaks, and promoted apoptosis as monitored by caspase-3 cleavage. The two drugs were also synergistic in mouse xenograft models and clinically relevant patient-derived organoids. Therefore, in the context of PARPi resistance, NAMPT inhibition could offer a promising new option for ovarian cancer patients.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Niacinamida , Neoplasias Ovarianas/tratamento farmacológico , Fosfatos de Dinucleosídeos
10.
Sci Adv ; 9(35): eade7486, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37656784

RESUMO

In-frame BRAF exon 12 deletions are increasingly identified in various tumor types. The resultant BRAFΔß3-αC oncoproteins usually lack five amino acids in the ß3-αC helix linker and sometimes contain de novo insertions. The dimerization status of BRAFΔß3-αC oncoproteins, their precise pathomechanism, and their direct druggability by RAF inhibitors (RAFi) has been under debate. Here, we functionally characterize BRAFΔLNVTAP>F and two novel mutants, BRAFdelinsFS and BRAFΔLNVT>F, and compare them with other BRAFΔß3-αC oncoproteins. We show that BRAFΔß3-αC oncoproteins not only form stable homodimers and large multiprotein complexes but also require dimerization. Nevertheless, details matter as aromatic amino acids at the deletion junction of some BRAFΔß3-αC oncoproteins, e.g., BRAFΔLNVTAP>F, increase their stability and dimerization propensity while conferring resistance to monomer-favoring RAFi such as dabrafenib or HSP 90/CDC37 inhibition. In contrast, dimer-favoring inhibitors such as naporafenib inhibit all BRAFΔß3-αC mutants in cell lines and patient-derived organoids, suggesting that tumors driven by such oncoproteins are vulnerable to these compounds.


Assuntos
Proteínas de Choque Térmico HSP90 , Proteínas Proto-Oncogênicas B-raf , Humanos , Dimerização , Proteínas Proto-Oncogênicas B-raf/genética , Aminoácidos
11.
BMC Biotechnol ; 11: 24, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21418658

RESUMO

BACKGROUND: The growing need for functional studies of genes has set the stage for the development of versatile tools for genetic manipulations. RESULTS: Aiming to provide tools for high throughput analysis of gene functions, we have developed a modified short hairpin RNA (shRNA) and gene expression system based on Gateway Technology. The system contains a series of entry and destination vectors that enables easy transfer of shRNA or cDNA into lentiviral expression systems with a variety of selection or marker genes (i.e. puromycin, hygromycin, green fluorescent protein-EGFP, yellow fluorescent protein-YFP and red fluorescent protein-dsRed2). Our shRNA entry vector pENTR.hU6.hH1 containing two tandem human shRNA expression promoters, H1 and U6, was capable of co-expressing two shRNA sequences simultaneously. The entry vector for gene overexpression, pENTR.CMV.ON was constructed to contain CMV promoter with a multiple cloning site flanked by loxP sites allowing for subsequent Cre/lox recombination. Both shRNA and cDNA expression vectors also contained attL sites necessary for recombination with attR sites in our destination expression vectors. As proof of principle we demonstrate the functionality and efficiency of this system by testing expression of several cDNA and shRNA sequences in a number of cell lines. CONCLUSION: Our system is a valuable addition to already existing library of Gateway based vectors and can be an essential tool for many aspects of gene functional studies.


Assuntos
Expressão Gênica , Marcação de Genes/métodos , Integrases/metabolismo , RNA Interferente Pequeno/genética , Linhagem Celular , Marcação de Genes/instrumentação , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Integrases/genética , RNA Interferente Pequeno/metabolismo , Recombinação Genética
12.
Sci Rep ; 11(1): 10619, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011980

RESUMO

Patient-derived xenograft (PDX) and their xenograft-derived organoid (XDO) models that recapitulate the genotypic and phenotypic landscape of patient cancers could help to advance research and lead to improved clinical management. PDX models were established from 276 pancreato-duodenal and biliary cancer resections. Initial, passage 0 (P0) engraftment rates were 59% (118/199) for pancreatic, 86% (25/29) for duodenal, and 35% (17/48) for biliary ductal tumors. Pancreatic ductal adenocarcinoma (PDAC), had a P0 engraftment rate of 62% (105/169). KRAS mutant and wild-type PDAC models were molecularly profiled, and XDO models were generated to perform initial drug response evaluations. Subsets of PDAC PDX models showed global copy number variants and gene expression profiles that were retained with serial passaging, and they showed a spectrum of somatic mutations represented in patient tumors. PDAC XDO models were established, with a success rate of 71% (10/14). Pathway activation of KRAS-MAPK in PDXs was independent of KRAS mutational status. Four wild-type KRAS models were characterized by one with EGFR (L747-P753 del), two with BRAF alterations (N486_P490del or V600E), and one with triple negative KRAS/EGFR/BRAF. Model OCIP256, characterized by BRAF (N486-P490 del), had activated phospho-ERK. A combination treatment of a pan-RAF inhibitor (LY3009120) and a MEK inhibitor (trametinib) effectively suppressed phospho-ERK and inhibited growth of OCIP256 XDO and PDX models. PDAC/duodenal adenocarcinoma have high success rates forming PDX/organoid and retaining their phenotypic and genotypic features. These models may be effective tools to evaluate novel drug combination therapies.


Assuntos
Neoplasias do Sistema Biliar/patologia , Neoplasias Duodenais/patologia , Organoides/patologia , Neoplasias Pancreáticas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias do Sistema Biliar/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Neoplasias Duodenais/tratamento farmacológico , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação/genética , Organoides/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
13.
Nat Commun ; 12(1): 6274, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725361

RESUMO

Cancer cells bearing distinct KRAS mutations exhibit variable sensitivity to SHP2 inhibitors (SHP2i). Here we show that cells harboring KRAS Q61H are uniquely resistant to SHP2i, and investigate the underlying mechanisms using biophysics, molecular dynamics, and cell-based approaches. Q61H mutation impairs intrinsic and GAP-mediated GTP hydrolysis, and impedes activation by SOS1, but does not alter tyrosyl phosphorylation. Wild-type and Q61H-mutant KRAS are both phosphorylated by Src on Tyr32 and Tyr64 and dephosphorylated by SHP2, however, SHP2i does not reduce ERK phosphorylation in KRAS Q61H cells. Phosphorylation of wild-type and Gly12-mutant KRAS, which are associated with sensitivity to SHP2i, confers resistance to regulation by GAP and GEF activities and impairs binding to RAF, whereas the near-complete GAP/GEF-resistance of KRAS Q61H remains unaltered, and high-affinity RAF interaction is retained. SHP2 can stimulate KRAS signaling by modulating GEF/GAP activities and dephosphorylating KRAS, processes that fail to regulate signaling of the Q61H mutant.


Assuntos
Inibidores Enzimáticos/farmacologia , Neoplasias Pulmonares/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Guanosina Trifosfato/metabolismo , Humanos , Neoplasias Pulmonares/enzimologia , Mutação de Sentido Incorreto , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinases raf/genética , Quinases raf/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
14.
J Mol Biol ; 433(23): 167294, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34662547

RESUMO

Activating mutations in the epidermal growth factor receptor (EGFR) are common driver mutations in non-small cell lung cancer (NSCLC). First, second and third generation EGFR tyrosine kinase inhibitors (TKIs) are effective at inhibiting mutant EGFR NSCLC, however, acquired resistance is a major issue, leading to disease relapse. Here, we characterize a small molecule, EMI66, an analog of a small molecule which we previously identified to inhibit mutant EGFR signalling via a novel mechanism of action. We show that EMI66 attenuates receptor tyrosine kinase (RTK) expression and signalling and alters the electrophoretic mobility of Coatomer Protein Complex Beta 2 (COPB2) protein in mutant EGFR NSCLC cells. Moreover, we demonstrate that EMI66 can alter the subcellular localization of EGFR and COPB2 within the early secretory pathway. Furthermore, we find that COPB2 knockdown reduces the growth of mutant EGFR lung cancer cells, alters the post-translational processing of RTKs, and alters the endoplasmic reticulum (ER) stress response pathway. Lastly, we show that EMI66 treatment also alters the ER stress response pathway and inhibits the growth of mutant EGFR lung cancer cells and organoids. Our results demonstrate that targeting of COPB2 with EMI66 presents a viable approach to attenuate mutant EGFR signalling and growth in NSCLC.


Assuntos
Proteína Coatomer/genética , Proteína Coatomer/metabolismo , Descoberta de Drogas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/genética , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Mol Cancer ; 9: 24, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20113529

RESUMO

BACKGROUND: The cyclin D1 (CCND1) and cyclin D3 (CCND3) are frequently co-overexpressed in pancreatic ductal adenocarcinoma (PDAC). Here we examine their differential roles in PDAC. RESULTS: CCND1 and CCND3 expression were selectively suppressed by shRNA in PDAC cell lines with expression levels of equal CCND1 and CCND3 (BxPC3), enhanced CCND1 (HPAC) or enhanced CCND3 (PANC1). Suppression of cell proliferation was greater with CCND3 than CCND1 downregulation. CCND3 suppression led to a reduced level of phosphorylated retinoblastoma protein (Ser795p-Rb/p110) and resulted in decreased levels of cyclin A mRNA and protein. A global gene expression analysis identified deregulated genes in D1- or D3-cyclin siRNA-treated PANC1 cells. The downregulated gene targets in CCND3 suppressed cells were significantly enriched in cell cycle associated processes (p < 0.005). In contrast, focal adhesion/actin cytoskeleton, MAPK and NF B signaling appeared to characterize the target genes and their interacting proteins in CCND1 suppressed PANC1 cells. CONCLUSIONS: Our results suggest that CCND3 is the primary driver of the cell cycle, in cooperation with CCND1 that integrates extracellular mitogenic signaling. We also present evidence that CCND1 plays a role in tumor cell migration. The results provide novel insights for common and differential targets of CCND1 and CCND3 overexpression during pancreatic duct cell carcinogenesis.


Assuntos
Carcinoma Ductal Pancreático/genética , Ciclina D1/genética , Ciclina D3/genética , Neoplasias Pancreáticas/genética , Actinas/metabolismo , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Senescência Celular/genética , Ciclina D1/metabolismo , Ciclina D3/metabolismo , Citoesqueleto/genética , Regulação para Baixo/genética , Adesões Focais/genética , Fase G1/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Neoplásicos/genética , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Fase S/genética
16.
Oncogene ; 39(2): 308-321, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31477830

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal human cancers, with 5-year patient survival rates of <5%. Activating mutations in KRAS are the predominant oncogenic drivers of PDAC but are accompanied by additional lower frequency genetic alterations. Our group previously identified the guanine nucleotide exchange factor ARHGEF10 in a genomic screen for genes with copy number alterations that may synergize with oncogenic KRAS to promote PDAC carcinogenesis. In the present study we show that ARHGEF10 possesses putative tumor suppressor function in PDAC. ARHGEF10 expression is reduced in over 70% of PDAC cell lines, and copy number loss is documented in more than 30% of PDAC patient-derived xenografts. Loss of ARHGEF10 expression enhanced subcutaneous tumor growth in mouse models, while its exogenous expression greatly impaired tumorigenesis. Loss of ARHGEF10 expression also increased in vitro proliferation, invasion, and motility of PDAC cell lines, and enhanced their metastatic spread in orthotopic mouse models. Treatment of ARHGEF10-depleted cells with the inhibitor dasatinib reduced levels of phospho Src kinase and attenuated motility and invasion in vitro. Together, our data indicate that ARHGEF10 may function as a tumor suppressor in PDAC.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Quinases da Família src/genética , Adenocarcinoma/patologia , Animais , Carcinogênese/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Dasatinibe/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , Mutação , Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais/efeitos dos fármacos , Proteínas Supressoras de Tumor/genética
17.
Sci Rep ; 10(1): 14514, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32884042

RESUMO

Esophageal adenocarcinoma has few known recurrent mutations and therefore robust, reliable and reproducible patient-specific models are needed for personalized treatment. Patient-derived organoid culture is a strategy that may allow for the personalized study of esophageal adenocarcinoma and the development of personalized induction therapy. We therefore developed a protocol to establish EAC organoids from endoscopic biopsies of naïve esophageal adenocarcinomas. Histologic characterization and molecular characterization of organoids by whole exome sequencing demonstrated recapitulation of the tumors' histology and genomic (~ 60% SNV overlap) characteristics. Drug testing using clinically appropriate chemotherapeutics and targeted therapeutics showed an overlap between the patient's tumor response and the corresponding organoids' response. Furthermore, we identified Barrett's esophagus epithelium as a potential source of organoid culture contamination. In conclusion, organoids can be robustly cultured from endoscopic biopsies of esophageal adenocarcinoma and recapitulate the originating tumor. This model demonstrates promise as a tool to better personalize therapy for esophageal adenocarcinoma patients.


Assuntos
Adenocarcinoma/tratamento farmacológico , Neoplasias Esofágicas/tratamento farmacológico , Quimioterapia de Indução/métodos , Medicina de Precisão/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Esôfago de Barrett/tratamento farmacológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Organoides/citologia
18.
Clin Cancer Res ; 26(5): 1162-1174, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31694835

RESUMO

PURPOSE: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related deaths worldwide. There is an unmet need to develop novel clinically relevant models of NSCLC to accelerate identification of drug targets and our understanding of the disease. EXPERIMENTAL DESIGN: Thirty surgically resected NSCLC primary patient tissue and 35 previously established patient-derived xenograft (PDX) models were processed for organoid culture establishment. Organoids were histologically and molecularly characterized by cytology and histology, exome sequencing, and RNA-sequencing analysis. Tumorigenicity was assessed through subcutaneous injection of organoids in NOD/SCID mice. Organoids were subjected to drug testing using EGFR, FGFR, and MEK-targeted therapies. RESULTS: We have identified cell culture conditions favoring the establishment of short-term and long-term expansion of NSCLC organoids derived from primary lung patient and PDX tumor tissue. The NSCLC organoids recapitulated the histology of the patient and PDX tumor. They also retained tumorigenicity, as evidenced by cytologic features of malignancy, xenograft formation, preservation of mutations, copy number aberrations, and gene expression profiles between the organoid and matched parental tumor tissue by whole-exome and RNA sequencing. NSCLC organoid models also preserved the sensitivity of the matched parental tumor to targeted therapeutics, and could be used to validate or discover biomarker-drug combinations. CONCLUSIONS: Our panel of NSCLC organoids closely recapitulates the genomics and biology of patient tumors, and is a potential platform for drug testing and biomarker validation.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Modelos Animais de Doenças , Neoplasias Pulmonares/patologia , Terapia de Alvo Molecular/métodos , Mutação , Organoides/patologia , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Técnicas de Cultura de Órgãos/métodos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nat Commun ; 10(1): 224, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644389

RESUMO

Deregulation of the RAS GTPase cycle due to mutations in the three RAS genes is commonly associated with cancer development. Protein tyrosine phosphatase SHP2 promotes RAF-to-MAPK signaling pathway and is an essential factor in RAS-driven oncogenesis. Despite the emergence of SHP2 inhibitors for the treatment of cancers harbouring mutant KRAS, the mechanism underlying SHP2 activation of KRAS signaling remains unclear. Here we report tyrosyl-phosphorylation of endogenous RAS and demonstrate that KRAS phosphorylation via Src on Tyr32 and Tyr64 alters the conformation of switch I and II regions, which stalls multiple steps of the GTPase cycle and impairs binding to effectors. In contrast, SHP2 dephosphorylates KRAS, a process that is required to maintain dynamic canonical KRAS GTPase cycle. Notably, Src- and SHP2-mediated regulation of KRAS activity extends to oncogenic KRAS and the inhibition of SHP2 disrupts the phosphorylation cycle, shifting the equilibrium of the GTPase cycle towards the stalled 'dark state'.


Assuntos
Antineoplásicos/uso terapêutico , GTP Fosfo-Hidrolases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Células HEK293 , Humanos , Masculino , Camundongos SCID , Neoplasias Pancreáticas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases raf/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA