Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nano Lett ; 24(7): 2142-2148, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38323571

RESUMO

Spins confined to point defects in atomically thin semiconductors constitute well-defined atomic-scale quantum systems that are being explored as single-photon emitters and spin qubits. Here, we investigate the in-gap electronic structure of individual sulfur vacancies in molybdenum disulfide (MoS2) monolayers using resonant tunneling scanning probe spectroscopy in the Coulomb blockade regime. Spectroscopic mapping of defect wave functions reveals an interplay of local symmetry breaking by a charge-state-dependent Jahn-Teller lattice distortion that, when combined with strong (≃100 meV) spin-orbit coupling, leads to a locking of an unpaired spin-1/2 magnetic moment to the lattice at low temperature, susceptible to lattice strain. Our results provide new insights into the spin and electronic structure of vacancy-induced in-gap states toward their application as electrically and optically addressable quantum systems.

2.
Nano Lett ; 23(13): 6171-6177, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37363814

RESUMO

Spins confined to atomically thin semiconductors are being actively explored as quantum information carriers. In transition metal dichalcogenides (TMDCs), the hexagonal crystal lattice gives rise to an additional valley degree of freedom with spin-valley locking and potentially enhanced spin life and coherence times. However, realizing well-separated single-particle levels and achieving transparent electrical contact to address them has remained challenging. Here, we report well-defined spin states in a few-layer MoS2 transistor, characterized with a spectral resolution of ∼50 µeV at Tel = 150 mK. Ground state magnetospectroscopy confirms a finite Berry-curvature induced coupling of spin and valley, reflected in a pronounced Zeeman anisotropy, with a large out-of-plane g-factor of g⊥ ≃ 8. A finite in-plane g-factor (g∥ ≃ 0.55-0.8) allows us to quantify spin-valley locking and estimate the spin-orbit splitting 2ΔSO ∼ 100 µeV. The demonstration of spin-valley locking is an important milestone toward realizing spin-valley quantum bits.

3.
Opt Express ; 30(8): 12630-12638, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472896

RESUMO

Germanium is typically used for solid-state electronics, fiber-optics, and infrared applications, due to its semiconducting behavior at optical and infrared wavelengths. In contrast, here we show that the germanium displays metallic nature and supports propagating surface plasmons in the deep ultraviolet (DUV) wavelengths, that is typically not possible to achieve with conventional plasmonic metals such as gold, silver, and aluminum. We measure the photonic band spectrum and distinguish the plasmonic excitation modes: bulk plasmons, surface plasmons, and Cherenkov radiation using a momentum-resolved electron energy loss spectroscopy. The observed spectrum is validated through the macroscopic electrodynamic electron energy loss theory and first-principles density functional theory calculations. In the DUV regime, intraband transitions of valence electrons dominate over the interband transitions, resulting in the observed highly dispersive surface plasmons. We further employ these surface plasmons in germanium to design a DUV radiation source based on the Smith-Purcell effect. Our work opens a new frontier of DUV plasmonics to enable the development of DUV devices such as metasurfaces, detectors, and light sources based on plasmonic germanium thin films.

4.
Nano Lett ; 21(3): 1517-1522, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33481612

RESUMO

Quantum gates between spin qubits can be implemented leveraging the natural Heisenberg exchange interaction between two electrons in contact with each other. This interaction is controllable by electrically tailoring the overlap between electronic wave functions in quantum dot systems, as long as they occupy neighboring dots. An alternative route is the exploration of superexchange-the coupling between remote spins mediated by a third idle electron that bridges the distance between quantum dots. We experimentally demonstrate direct exchange coupling and provide evidence for second neighbor mediated superexchange in a linear array of three single-electron spin qubits in silicon, inferred from the electron spin resonance frequency spectra. We confirm theoretically, through atomistic modeling, that the device geometry only allows for sizable direct exchange coupling for neighboring dots, while next-nearest neighbor coupling cannot stem from the vanishingly small tail of the electronic wave function of the remote dots, and is only possible if mediated.

5.
Small ; 15(41): e1902770, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31448564

RESUMO

In this paper, electrostatically configurable 2D tungsten diselenide (WSe2 ) electronic devices are demonstrated. Utilizing a novel triple-gate design, a WSe2 device is able to operate as a tunneling field-effect transistor (TFET), a metal-oxide-semiconductor field-effect transistor (MOSFET) as well as a diode, by electrostatically tuning the channel doping to the desired profile. The implementation of scaled gate dielectric and gate electrode spacing enables higher band-to-band tunneling transmission with the best observed subthreshold swing (SS) among all reported homojunction TFETs on 2D materials. Self-consistent full-band atomistic quantum transport simulations quantitatively agree with electrical measurements of both the MOSFET and TFET and suggest that scaling gate oxide below 3 nm is necessary to achieve sub-60 mV dec-1 SS, while further improvement can be obtained by optimizing the spacers. Diode operation is also demonstrated with the best ideality factor of 1.5, owing to the enhanced electrostatic control compared to previous reports. This research sheds light on the potential of utilizing electrostatic doping scheme for low-power electronics and opens a path toward novel designs of field programmable mixed analog/digital circuitry for reconfigurable computing.

6.
Nano Lett ; 15(12): 8000-7, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26560813

RESUMO

Artificial semiconductors with manufactured band structures have opened up many new applications in the field of optoelectronics. The emerging two-dimensional (2D) semiconductor materials, transition metal dichalcogenides (TMDs), cover a large range of bandgaps and have shown potential in high performance device applications. Interestingly, the ultrathin body and anisotropic material properties of the layered TMDs allow a wide range modification of their band structures by electric field, which is obviously desirable for many nanoelectronic and nanophotonic applications. Here, we demonstrate a continuous bandgap tuning in bilayer MoS2 using a dual-gated field-effect transistor (FET) and photoluminescence (PL) spectroscopy. Density functional theory (DFT) is employed to calculate the field dependent band structures, attributing the widely tunable bandgap to an interlayer direct bandgap transition. This unique electric field controlled spontaneous bandgap modulation approaching the limit of semiconductor-to-metal transition can open up a new field of not yet existing applications.

7.
Phys Chem Chem Phys ; 17(4): 2484-93, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25493297

RESUMO

The effects of strain and confinement on the energy levels and emission spectra of dome-shaped, Ge-core-Si-shell nanocrystals (NCs) with diameters ranging from 5 to 45 nm are investigated with atomistic models. For NCs with base diameters ≥15 nm, the strain-induced increase in the energy gap is ∼100 meV. The increase in the energy gap is primarily the result of the downward shift in the occupied states confined in the Ge core. The fundamental energy gap varies from 960 meV to 550 meV as the NC diameter increases from 5 nm to 45 nm. Confinement and strain break the degeneracy of the lowest excited state and split it into two states separated by a few meV. For the smaller NCs, one of these states can be localized in the Si core and the other state can be in the Si cap. For diameters ≥20 nm, both of these states are localized in the Si cap. The electronic states are calculated using an atomistic sp(3)d(5)s* tight-binding model including spin-orbit coupling, and geometry relaxation is performed using a valence force field model.

8.
Phys Rev Lett ; 113(24): 246406, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25541787

RESUMO

An atomistic method of calculating the spin-lattice relaxation times (T1) is presented for donors in silicon nanostructures comprising of millions of atoms. The method takes into account the full band structure of silicon including the spin-orbit interaction. The electron-phonon Hamiltonian, and hence, the deformation potential, is directly evaluated from the strain-dependent tight-binding Hamiltonian. The technique is applied to single donors and donor clusters in silicon, and explains the variation of T1 with the number of donors and electrons, as well as donor locations. Without any adjustable parameters, the relaxation rates in a magnetic field for both systems are found to vary as B5, in excellent quantitative agreement with experimental measurements. The results also show that by engineering electronic wave functions in nanostructures, T1 times can be varied by orders of magnitude.

9.
Phys Rev Lett ; 113(24): 246801, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25541792

RESUMO

Magnetic fluctuations caused by the nuclear spins of a host crystal are often the leading source of decoherence for many types of solid-state spin qubit. In group-IV semiconductor materials, the spin-bearing nuclei are sufficiently rare that it is possible to identify and control individual host nuclear spins. This Letter presents the first experimental detection and manipulation of a single ²9Si nuclear spin. The quantum nondemolition single-shot readout of the spin is demonstrated, and a Hahn echo measurement reveals a coherence time of T2=6.3(7) ms­in excellent agreement with bulk experiments. Atomistic modeling combined with extracted experimental parameters provides possible lattice sites for the ²9Si atom under investigation. These results demonstrate that single ²9Si nuclear spins could serve as a valuable resource in a silicon spin-based quantum computer.

10.
Nano Lett ; 13(5): 1903-9, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23570240

RESUMO

The exact location of a single dopant atom in a nanostructure can influence or fully determine the functionality of highly scaled transistors or spin-based devices. We demonstrate here a noninvasive spatial metrology technique, based on the microscopic modeling of three electrical measurements on a single-atom (phosphorus in silicon) spin qubit device: hyperfine coupling, ground state energy, and capacitive coupling to nearby gates. This technique allows us to locate the qubit atom with a precision of ±2.5 nm in two directions and ±15 nm in the third direction, which represents a 1500-fold improvement with respect to the prefabrication statistics obtainable from the ion implantation parameters.


Assuntos
Nanoestruturas/química , Fósforo/química , Silício/química
11.
Nano Lett ; 13(12): 5785-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24199677

RESUMO

We report Pauli blockade in a multielectron silicon metal-oxide-semiconductor double quantum dot with an integrated charge sensor. The current is rectified up to a blockade energy of 0.18 ± 0.03 meV. The blockade energy is analogous to singlet-triplet splitting in a two electron double quantum dot. Built-in imbalances of tunnel rates in the MOS DQD obfuscate some edges of the bias triangles. A method to extract the bias triangles is described, and a numeric rate-equation simulation is used to understand the effect of tunneling imbalances and finite temperature on charge stability (honeycomb) diagram, in particular the identification of missing and shifting edges. A bound on relaxation time of the triplet-like state is also obtained from this measurement.


Assuntos
Metais/química , Nanotecnologia , Óxidos/química , Pontos Quânticos/química , Semicondutores
12.
Adv Mater ; 36(26): e2312736, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38506626

RESUMO

Spin-orbit interactions arise whenever the bulk inversion symmetry and/or structural inversion symmetry of a crystal is broken providing a bridge between a qubit's spin and orbital degree of freedom. While strong interactions can facilitate fast qubit operations by all-electrical control, they also provide a mechanism to couple charge noise thereby limiting qubit lifetimes. Previously believed to be negligible in bulk silicon, recent silicon nano-electronic devices have shown larger than bulk spin-orbit coupling strengths from Dresselhaus and Rashba couplings. Here, it is shown that with precision placement of phosphorus atoms in silicon along the [110] direction (without inversion symmetry) or [111] direction (with inversion symmetry), a wide range of Dresselhaus and Rashba coupling strength can be achieved from zero to 1113 × 10-13eV-cm. It is shown that with precision placement of phosphorus atoms, the local symmetry (C2v, D2d, and D3d) can be changed to engineer spin-orbit interactions. Since spin-orbit interactions affect both qubit operation and lifetimes, understanding their impact is essential for quantum processor design.

13.
Nat Commun ; 15(1): 4299, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769086

RESUMO

Spins of electrons in silicon MOS quantum dots combine exquisite quantum properties and scalable fabrication. In the age of quantum technology, however, the metrics that crowned Si/SiO2 as the microelectronics standard need to be reassessed with respect to their impact upon qubit performance. We chart spin qubit variability due to the unavoidable atomic-scale roughness of the Si/SiO2 interface, compiling experiments across 12 devices, and develop theoretical tools to analyse these results. Atomistic tight binding and path integral Monte Carlo methods are adapted to describe fluctuations in devices with millions of atoms by directly analysing their wavefunctions and electron paths instead of their energy spectra. We correlate the effect of roughness with the variability in qubit position, deformation, valley splitting, valley phase, spin-orbit coupling and exchange coupling. These variabilities are found to be bounded, and they lie within the tolerances for scalable architectures for quantum computing as long as robust control methods are incorporated.

14.
Heliyon ; 10(2): e24165, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293496

RESUMO

Carrot is a seasonal perishable tuberous root vegetable which presents a preservation challenge owing to its elevated moisture content. Recently, carrot processing has received more attention because of its many health-promoting qualities and the reduction of postharvest losses in a cost-effective safe way. This study was designed to sort out the effective solar drying technique including pre-treatment that would retain the color and quality characteristics of dehydrated carrot. Carrot slices were subjected to dry using open sun drying (D1), solar drying long chimney (D2), solar drying short chimney (D3) and box solar drying (D4) techniques with the pretreatments of ascorbic acid 1 % (C3), citric acid 5 % (C4), potassium metabisulfite 1 % (C5) and potassium sodium tartrate 0.3 % (C6) before drying. Drying characteristics, nutritional attributes, phytochemicals and antioxidant of the dehydrated carrot samples were compared with the fresh sample and untreated (control) sample. Results showed that D4 was a good drying method to preserve nutritional quality with good appearance. Among the pretreatments, C5 and C4 resulted improved nutritional quality retention, enhanced visual acceptability and enriched antioxidant activities. PCA (Principal Component Analysis) and correlation matrix revealed that D4 with C5 retained the maximum amount of vitamin, minerals, total phenolic content, antioxidant and admirable dehydrated carrot color by inactivating enzymatic reaction. Therefore, box solar drying with potassium metabisulfite pretreatment would be very promising for functional carrot drying retaining acceptable color and nutrition composition.

15.
Adv Mater ; 35(6): e2201625, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36208088

RESUMO

Phosphorus atoms in silicon offer a rich quantum computing platform where both nuclear and electron spins can be used to store and process quantum information. While individual control of electron and nuclear spins has been demonstrated, the interplay between them during qubit operations has been largely unexplored. This study investigates the use of exchange-based operation between donor bound electron spins to probe the local magnetic fields experienced by the qubits with exquisite precision at the atomic scale. To achieve this, coherent exchange oscillations are performed between two electron spin qubits, where the left and right qubits are hosted by three and two phosphorus donors, respectively. The frequency spectrum of exchange oscillations shows quantized changes in the local magnetic fields at the qubit sites, corresponding to the different hyperfine coupling between the electron and each of the qubit-hosting nuclear spins. This ability to sense the hyperfine fields of individual nuclear spins using the exchange interaction constitutes a unique metrology technique, which reveals the exact crystallographic arrangements of the phosphorus atoms in the silicon crystal for each qubit. The detailed knowledge obtained of the local magnetic environment can then be used to engineer hyperfine fields in multi-donor qubits for high-fidelity two-qubit gates.

16.
ACS Nano ; 17(22): 22601-22610, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37930801

RESUMO

Universal quantum computing requires fast single- and two-qubit gates with individual qubit addressability to minimize decoherence errors during processor operation. Electron spin qubits using individual phosphorus donor atoms in silicon have demonstrated long coherence times with high fidelities, providing an attractive platform for scalable quantum computing. While individual qubit addressability has been demonstrated by controlling the hyperfine interaction between the electron and nuclear wave function in a global magnetic field, the small hyperfine Stark coefficient of 0.34 MHz/MV m-1 achieved to date has limited the speed of single quantum gates to ∼42 µs to avoid rotating neighboring qubits due to power broadening from the antenna. The use of molecular 2P qubits with more than one donor atom has not only demonstrated fast (0.8 ns) two-qubit SWAP gates and long spin relaxation times of ∼30 s but provides an alternate way to achieve high selectivity of the qubit resonance frequency. Here, we show in two different devices that by placing the donors with comparable interatomic spacings (∼0.8 nm) but along different crystallographic axes, either the [110] or [310] orientations using STM lithography, we can engineer the hyperfine Stark shift from 1 MHz/MV m-1 to 11.2 MHz/MV m-1, respectively, a factor of 10 difference. NEMO atomistic calculations show that larger hyperfine Stark coefficients of up to ∼70 MHz/MV m-1 can be achieved within 2P molecules by placing the donors ≥5 nm apart. When combined with Gaussian pulse shaping, we show that fast single qubit gates with 2π rotation times of 10 ns and ∼99% fidelity single qubit operations are feasible without affecting neighboring qubits. By increasing the single qubit gate time to ∼550 ns, two orders of magnitude faster than previously measured, our simulations confirm that >99.99% single qubit control fidelities are achievable.

17.
Nat Commun ; 13(1): 7777, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522370

RESUMO

Large-scale arrays of quantum-dot spin qubits in Si/SiGe quantum wells require large or tunable energy splittings of the valley states associated with degenerate conduction band minima. Existing proposals to deterministically enhance the valley splitting rely on sharp interfaces or modifications in the quantum well barriers that can be difficult to grow. Here, we propose and demonstrate a new heterostructure, the "Wiggle Well", whose key feature is Ge concentration oscillations inside the quantum well. Experimentally, we show that placing Ge in the quantum well does not significantly impact our ability to form and manipulate single-electron quantum dots. We further observe large and widely tunable valley splittings, from 54 to 239 µeV. Tight-binding calculations, and the tunability of the valley splitting, indicate that these results can mainly be attributed to random concentration fluctuations that are amplified by the presence of Ge alloy in the heterostructure, as opposed to a deterministic enhancement due to the concentration oscillations. Quantitative predictions for several other heterostructures point to the Wiggle Well as a robust method for reliably enhancing the valley splitting in future qubit devices.

18.
Nat Commun ; 13(1): 7730, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513678

RESUMO

Electron spins in Si/SiGe quantum wells suffer from nearly degenerate conduction band valleys, which compete with the spin degree of freedom in the formation of qubits. Despite attempts to enhance the valley energy splitting deterministically, by engineering a sharp interface, valley splitting fluctuations remain a serious problem for qubit uniformity, needed to scale up to large quantum processors. Here, we elucidate and statistically predict the valley splitting by the holistic integration of 3D atomic-level properties, theory and transport. We find that the concentration fluctuations of Si and Ge atoms within the 3D landscape of Si/SiGe interfaces can explain the observed large spread of valley splitting from measurements on many quantum dot devices. Against the prevailing belief, we propose to boost these random alloy composition fluctuations by incorporating Ge atoms in the Si quantum well to statistically enhance valley splitting.

19.
Nanotechnology ; 22(22): 225202, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21454928

RESUMO

A singly ionized two-donor molecule in silicon is an interesting test-bed system for implementing a quantum bit using charge degrees of freedom at the atomic limit of device fabrication. The operating principles of such a device are based on wavefunction symmetries defined by charge localizations and energy gaps in the spectrum. The Stark-shifted electronic structure of a two-donor phosphorus molecule is investigated using a multi-million-atom tight-binding framework. The effects of surface (S) and barrier (B) gates are analyzed for various voltage regimes. It is found that gate control is smooth for any donor separation, although at certain donor orientations the S and B gates may alter in functionality. Effects such as interface ionization, saturation of the lowest energy gap, and sensitivity to donor and gate placements are also investigated. Excited molecular states of P(2) + are found to impose limits on the allowed donor separations and operating gate voltages for coherent operation. This work therefore outlines and analyzes the various issues that are of importance in the design and control of such donor molecular systems.

20.
ACS Nano ; 13(1): 377-385, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30563322

RESUMO

Band-to-band tunneling field-effect transistors (TFETs) have emerged as promising candidates for low-power integration circuits beyond conventional metal-oxide-semiconductor field-effect transistors (MOSFETs) and have been demonstrated to overcome the thermionic limit, which results intrinsically in sub-threshold swings of at least 60 mV/dec at room temperature. Here, we demonstrate complementary TFETs based on few-layer black phosphorus, in which multiple top gates create electrostatic doping in the source and drain regions. By electrically tuning the doping types and levels in the source and drain regions, the device can be reconfigured to allow for TFET or MOSFET operation and can be tuned to be n-type or p-type. Owing to the proper choice of materials and careful engineering of device structures, record-high current densities have been achieved in 2D TFETs. Full-band atomistic quantum transport simulations of the fabricated devices agree quantitatively with the current-voltage measurements, which gives credibility to the promising simulation results of ultrascaled phosphorene TFETs. Using atomistic simulations, we project substantial improvements in the performance of the fabricated TFETs when channel thicknesses and oxide thicknesses are scaled down.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA