Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Bioengineering (Basel) ; 11(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38790361

RESUMO

In the dynamic landscape of tissue engineering, the integration of tissue-engineered constructs (TECs) faces a dual challenge-initiating beneficial inflammation for regeneration while avoiding the perils of prolonged immune activation. As TECs encounter the immediate reaction of the immune system upon implantation, the unique immunomodulatory properties of mesenchymal stem/stromal cells (MSCs) emerge as key navigators. Harnessing the paracrine effects of MSCs, researchers aim to craft a localized microenvironment that not only enhances TEC integration but also holds therapeutic promise for inflammatory-driven pathologies. This review unravels the latest advancements, applications, obstacles, and future prospects surrounding the strategic alliance between MSCs and TECs, shedding light on the immunological symphony that guides the course of regenerative medicine.

2.
Biomolecules ; 13(8)2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37627232

RESUMO

Urethral reconstruction strategies are limited with many associated drawbacks. In this context, the main challenge is the unavailability of a suitable tissue that can endure urine exposure. However, most of the used tissues in clinical practices are non-specialized grafts that finally fail to prevent urine leakage. Tissue engineering has offered novel solutions to address this dilemma. In this technology, scaffolding biomaterials characteristics are of prime importance. Biological macromolecules are naturally derived polymers that have been extensively studied for various tissue engineering applications. This review discusses the recent advances, applications, and challenges of biological macromolecule-based scaffolds in urethral reconstruction.


Assuntos
Líquidos Corporais , Uretra , Uretra/cirurgia , Materiais Biocompatíveis/uso terapêutico , Polímeros , Engenharia Tecidual
3.
IEEE Trans Nanobioscience ; 22(3): 685-701, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35724284

RESUMO

Recent global outbreak of COVID-19 has raised serious awareness about our abilities to protect ourselves from hazardous pathogens and volatile organic compounds. Evidence suggests that personal protection equipment such as respiratory masks can radically decrease rates of transmission and infections due to contagious pathogens. To increase filtration efficiency without compromising breathability, application of nanofibers in production of respiratory masks have been proposed. The emergence of nanofibers in the industry has since introduced a next generation of respiratory masks that promises improved filtration efficiency and breathability via nanometric pores and thin fiber thickness. In addition, the surface of nanofibers can be functionalized and enhanced to capture specific particles. In addition to conventional techniques such as melt-blown, respiratory masks by nanofibers have provided an opportunity to prevent pathogen transmission. As the surge in global demand for respiratory masks increases, herein, we reviewed recent advancement of nanofibers as an alternative technique to be used in respiratory mask production.


Assuntos
COVID-19 , Nanofibras , Humanos , COVID-19/prevenção & controle , Máscaras , Filtração
4.
Int J Biol Macromol ; 239: 124099, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36948335

RESUMO

Wound dressing is applied to promote the healing process, wound protection, and additionally regeneration of injured skin. In this study, a bilayer scaffold composed of a hydrogel and nanofibers was fabricated to improve the regeneration of injured skin. To this end, polycaprolactone/gelatin (PCL/Gel) nanofibers were electrospun directly on the prepared collagen/alginate (Col/Alg) hydrogel. The bilayer scaffold was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), mechanical properties, and swelling/degradation time. Cytotoxicity assays were evaluated using MTT assay. Then, the nanofiber and bilayer scaffolds were seeded with Adipose-derived stem cells (ADSCs). ADSCs were isolated from rat adipose tissue and analyzed using flow cytometry, in advance. Full-thickness wounds on the backs of rats were dressed with ADSCs-seeded bilayer scaffolds and nanofibers. Histopathological evaluations were performed after 14 and 21 days using H&E (hematoxylin and eosin) staining. The results indicated that re-epithelialization, angiogenesis, and collagen remodeling were enhanced in ADSCs-seeded bilayer scaffolds and nanofibers in comparison with the control group. In conclusion, the best re-epithelialization, collagen organization, neovascularization, and low presence of inflammation in the wound area were observed in the ADSCs-seeded bilayer scaffolds.


Assuntos
Células-Tronco Mesenquimais , Nanofibras , Ratos , Animais , Gelatina , Alicerces Teciduais , Hidrogéis , Alginatos , Colágeno , Bandagens
5.
J Fluoresc ; 22(1): 281-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21901392

RESUMO

The aim of this research is to study the normalized fluorescence spectra (intensity variations and area under the fluorescence signal), relative quantum yield, extinction coefficient and intracellular properties of normal and malignant human bone cells. Using Laser-Induced Fluorescence Spectroscopy (LIFS) upon excitation of 405 nm, the comparison of emission spectra of bone cells revealed that fluorescence intensity and the area under the spectra of malignant bone cells was less than that of normal. In addition, the area ratio and shape factor were changed. We obtained two emission bands in spectra of normal cells centered at about 486 and 575 nm and for malignant cells about 482 and 586 nm respectively, which are most likely attributed to NADH and riboflavins. Using fluorescein sodium emission spectrum, the relative quantum yield of bone cells is numerically determined.


Assuntos
Neoplasias Ósseas/patologia , Osso e Ossos/citologia , Osso e Ossos/patologia , Lasers , Espectrometria de Fluorescência/métodos , Linhagem Celular Tumoral , Humanos
6.
ASAIO J ; 68(1): 123-132, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34138777

RESUMO

In the cardiovascular system, heart valves and vessels are subjected to continuous cyclic mechanical loadings due to the pulsatile nature of blood flow. Hence, in leveraging tissue engineering (TE) strategies to regenerate such a system, the candidate scaffold should not only be biocompatible with the desired biodegradation rate, but it should also be mechanically competent to provide a supportive structure for facilitating stem cells retention, growth, and differentiation. To this end, herein, we introduced a novel scaffold composed of poly(glycerol-sebacate) (PGS) and polyurethane (PU), which comprises of two layers: an electrospun pure PU layer beneath another electrospun PGS/PU layer with a different ratio of PGS to PU (3:2, 1:1, 2:3 Wt:Wt). The electrospun PGS/PU-PU scaffold was mechanically competent and showed intended hydrophilicity and a good biodegradation rate. Moreover, the PGS/PU-PU scaffold indicated cell viability and proliferation within ten days of in vitro cell culture and upon 7 day vascular endothelial growth factor (VEGF) stimulation, supported endothelial differentiation of mesenchymal stem cells by significant overexpression of platelet-endothelial cell adhesion molecule-1, von Willebrand factor, and VEGF receptor 2. The results of this study could be implemented in cardiovascular TE strategies when regeneration of blood vessel or heart valve is desired.


Assuntos
Poliuretanos , Alicerces Teciduais , Membrana Basal , Proliferação de Células , Decanoatos , Glicerol/análogos & derivados , Polímeros , Engenharia Tecidual , Fator A de Crescimento do Endotélio Vascular
7.
Mater Sci Eng C Mater Biol Appl ; 110: 110626, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204067

RESUMO

Developing a biomimetic substrate with intrinsic potential for cell attachment and growth has always been a tissue engineering challenge. In the present research, we successfully fabricated PMS:PLA nanofibrous scaffolds for the first time using electrospinning process by adjusting blending ratios, feed rates and polymer concentrations. A desirable composition was found when homogenous nanofibers with an average fiber diameter of 235 ±â€¯38 nm were achieved at 10% w/v for PMS:PLA 60:40. The scaffolds were then characterized for their microstructure, mechanical strength and elasticity, degradation rate, porosity, wettability and cell/tissue compatibility. Mechanical analysis and degradation behavior of PMS:PLA nanofibrous scaffolds revealed appropriate elasticity, stiffness and strength, as well as degradation rate appropriate for soft tissues. Nitrogen adsorption-desorption analysis discovered that mesoporous nanofibers with enhanced specific surface area were fabricated. Further in vitro and in vivo biocompatibility evaluations revealed enhanced cytocompatibility, proliferation and tissue responses of PMS:PLA nanofibrous scaffolds with desirable cell-scaffold interactions. Moreover, PMS:PLA nanofibrous scaffolds exhibited negligible inflammatory responses with significantly thinner fibrotic capsule formation and minor infiltration of inflammatory cells compared to PLA nanofibers. These findings suggest that PMS/PLA nanofibrous scaffolds could be introduced as potential candidates with improved properties for soft tissue engineering applications.


Assuntos
Materiais Biocompatíveis , Teste de Materiais , Nanofibras/química , Poliésteres/química , Engenharia Tecidual , Alicerces Teciduais/química , Células 3T3 , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Masculino , Camundongos , Ratos , Ratos Endogâmicos Lew
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA